System Identification Toolbox™ 7
User’s Guide

Lennart Ljung

MATLAB
SIMULINK"

‘\The MathWorks™

Accelerating the pace of engineering and science

LN N

How to Contact The MathWorks

www . mathworks.com Web

comp.soft-sys.matlab Newsgroup

www . mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.
System Identification Toolbox™ User’s Guide

© COPYRIGHT 1988-2010 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program

or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used

or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www . mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

April 1988

July 1991

May 1995
November 2000
April 2001

July 2002

June 2004
March 2005
September 2005
March 2006
September 2006
March 2007
September 2007
March 2008
October 2008
March 2009
September 2009
March 2010

First printing
Second printing
Third printing
Fourth printing
Fifth printing
Online only
Sixth printing
Online only
Seventh printing
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

Revised for Version 5.0 (Release 12)

Revised for Version 5.0.2 (Release 13)
Revised for Version 6.0.1 (Release 14)
Revised for Version 6.1.1 (Release 14SP2)
Revised for Version 6.1.2 (Release 14SP3)
Revised for Version 6.1.3 (Release 2006a)
Revised for Version 6.2 (Release 2006b)
Revised for Version 7.0 (Release 2007a)
Revised for Version 7.1 (Release 2007b)
Revised for Version 7.2 (Release 2008a)
Revised for Version 7.2.1 (Release 2008b)
Revised for Version 7.3 (Release 2009a)
Revised for Version 7.3.1 (Release 2009b)
Revised for Version 7.4 (Release 2010a)

About the Developers

About the Developers

System Identification Toolbox™ software is developed in association with the
following leading researchers in the system identification field:

Lennart Ljung. Professor Lennart Ljung is with the Department of
Electrical Engineering at Link6ping University in Sweden. He is a recognized
leader in system identification and has published numerous papers and books
in this area.

Qinghua Zhang. Dr. Qinghua Zhang is a researcher at Institut National
de Recherche en Informatique et en Automatique (INRIA) and at Institut de
Recherche en Informatique et Systemes Aléatoires (IRISA), both in Rennes,
France. He conducts research in the areas of nonlinear system identification,
fault diagnosis, and signal processing with applications in the fields of energy,
automotive, and biomedical systems.

Peter Lindskog. Dr. Peter Lindskog is employed by NIRA Dynamics
AB, Sweden. He conducts research in the areas of system identification,
signal processing, and automatic control with a focus on vehicle industry
applications.

Anatoli Juditsky. Professor Anatoli Juditsky is with the Laboratoire Jean
Kuntzmann at the Université Joseph Fourier, Grenoble, France. He conducts
research in the areas of nonparametric statistics, system identification, and
stochastic optimization.

About the Developers

Choosing Your System Identification Approach

1

Linear Model Structures 1-2
Nonlinear Model Structures 1-4
Recommended Model Estimation Sequence 1-5

Supported Models for Time- and Frequency-Domain

Data e 1-7
Supported Models for Time-Domain Data 1-7
Supported Models for Frequency-Domain Data 1-8

Supported Continuous-Time and Discrete-Time

Modelsiii i e 1-10
Commands for Model Estimation 1-12
Creating Model Structures at the Command Line 1-14

About System Identification Toolbox Model Objects 1-14

When to Construct a Model Structure Independently of

Estimation it 1-15

Commands for Constructing Model Structures 1-16

Model Properties 1-17

See AlSO it 1-23
Modeling Multiple-Output Systems 1-24

About Modeling Multiple-Output Systems 1-24

Modeling Multiple Outputs Directly 1-25

Modeling Multiple Outputs as a Combination of

Single-Output Models v, 1-25

Improving Multiple-Output Estimation Results by

Weighing Outputs During Estimation 1-26

vii

viii

Contents

Data Import and Processing

2

Types of Data You Can Model 2-2
Ways to Process Data for System Identification 2-4
Requirements on Data Sampling 2-6
Importing Data into the MATLAB Workspace 2-7
Importing Time-Domain Data into MATLAB 2-7
Importing Time-Series Data into MATLAB 2-8
Importing Frequency-Domain Data into MATLAB 2-9
Importing Frequency-Response Data into MATLAB 2-11
Importing Dataintothe GUI 2-14
Types of Data You Can Import intothe GUT 2-14
Importing Time-Domain Data into the GUT 2-16
Importing Frequency-Domain Data into the GUT 2-19
Importing Frequency-Response Data into the GUI 2-22
Importing Data Objects intothe GUL 2-26
Specifying the Data Sampling Interval 2-30
Specifying Estimation and Validation Data 2-31
Preprocessing Data Using Quick Start 2-32
Creating Data Sets from a Subset of Signal Channels 2-33
Creating Multiexperiment Data Sets in the GUT 2-35
Viewing Data Properties 2-42
Renaming Data and Changing Display Color 2-43
Distinguishing Data Typesinthe GUI 2-45
Organizing Datalcons, 2-45
Deleting Data Setsinthe GUI 2-46
Exporting Data from the GUI to the MATLAB
Workspace ...t e 2-47

Representing Time- and Frequency-Domain Data Using

iddata Objects it iiiiiennnnnnnn.. 2-49
iddata Constructorc.ouiiiiiiinnnennn. 2-49
iddata Propertiesot 2-52
Creating Multiexperiment Data at the Command Line ... 2-55
Subreferencing iddata Objects 2-57
Modifying Time and Frequency Vectors 2-61

Naming, Adding, and Removing Data Channels 2-64
Concatenating iddata Objects 2-66

Representing Frequency-Response Data Using idfrd

ObjJects e 2-69
1dfrd Constructorciiiiiiiii . 2-69
1dfrd Propertiesc0iiiiiiiiii 2-70
Subreferencing idfrd Objectsccv ... 2-72
Concatenating idfrd Objectsccvvievoo... 2-73
See AlSO i e e e 2-76
Analyzing Data Quality 2-78
Is Your Data Ready for Modeling? 2-78
Plotting Data in the GUI Versus at the Command Line .. 2-79
How to Plot Datainthe GUI 2-79
How to Plot Data at the Command Line 2-85
How to Analyze Data Using the advice Command 2-87
Selecting Subsetsof Data 2-89
Why Select Subsets of Data? 2-89
Selecting Data Usingthe GUT 2-90
Selecting Data at the Command Line 2-92
Handling Missing Data and Outliers 2-93
Handling MissingDatacc0uiiiiieoo... 2-93
Handling Outliers0t 2-94
Example — Extracting and Modeling Specific Data
SegmMeNtS ... e 2-95
See AlSO e e 2-96
Handling Offsets and TrendsinData 2-97
When to Detrend Data iiii.... 2-97
Alternatives for Detrending Data in GUI or at the
Command-Line iiiiiinnnnn.. 2-98
How to Detrend Data Usingthe GUI 2-99
How to Detrend Data at the Command Line 2-99
Next Steps After Detrending 2-101
ResamplingData, 2-102
What Is Resampling? 2-102
Resampling Data Usingthe GUI 2-103

ix

Resampling Data at the Command Line 2-103

Resampling Data Without Aliasing Effects 2-105
See AlSO i e 2-108
FilteringData 2-109
Supported Filters 2-109
Choosing to Prefilter Your Data 2-109
How to Filter Data Usingthe GUI 2-110
How to Filter Data at the Command Line 2-113
See AlSO i e e e 2-116
Generating Data Using Simulation 2-117
Commands for Generating and Simulating Data 2-117
Example — Creating Data with Periodic Inputs 2-118
Example — Generating Data Using Simulation 2-119
Simulating Data Using Other MathWorks Products 2-120

Transforming Between Time- and Frequency-Domain

Data e e e e 2-121
Transforming Data Domaininthe GUI 2-121
Transforming Data Domain at the Command Line 2-128
Manipulating Complex-Valued Data 2-133
Supported Operations for Complex Data 2-133

Processing Complex iddata Signals at the Command
Line ... e 2-133

Linear Model Identification

3

Identifying Frequency-Response Models 3-2
What Is a Frequency-Response Model? 3-2
Data Supported by Frequency-Response Models 3-3
How to Estimate Frequency-Response Models in the

GUIL e 3-3
How to Estimate Frequency-Response Models at the

CommandLinet iiiiiinnn... 3-5
Options for Computing Spectral Models 3-5
Options for Frequency Resolution 3-6

Contents

Spectrum Normalization 3-8

Identifying Impulse-Response Models 3-11
What Is Time-Domain Correlation Analysis? 3-11
Data Supported by Correlation Analysis 3-12
How to Estimate Impulse and Step Response Models Using

the GUL e 3-12
How to Estimate Impulse and Step Response Models at the

CommandLine00 . iiiiiiiiiiinnen.. 3-14
How to Compute Response Values 3-15
How to Identify Delay Using Transient-Response Plots ... 3-16
Algorithm for Correlation Analysis 3-18

Identifying Low-Order Transfer Functions (Process

Models) i 3-20
What Is a Process Model? 3-20
Data Supported by a Process Model 3-21
How to Estimate Process Models Using the GUI 3-21
How to Estimate Process Models at the Command Line .. 3-27
Options for Specifying the Process-Model Structure 3-33
Options for Multiple-Input Models 3-34
Options for the Disturbance Model Structure 3-35
Options for Frequency-Weighing Focus 3-36
Options for Initial States 3-37
Identifying Input-Output Polynomial Models 3-39
What Are Black-Box Polynomial Models? 3-39
Data Supported by Polynomial Models 3-46
Preliminary Step — Estimating Model Orders and Input
Delays ... 3-48
How to Estimate Polynomial Models in the GUT 3-56
How to Estimate Polynomial Models at the Command
Line ... e 3-59
Options for Multiple-Input and Multiple-Output ARX
Orders .ot e e e 3-64
Option for Frequency-Weighing Focus 3-65
Options for Initial States, 3-66
Algorithms for Estimating Polynomial Models 3-66
Example — Estimating Models Using armax 3-67
Identifying State-Space Models 3-73

What Are State-Space Models? 3-73

Data Supported by State-Space Models 3-77

Supported State-Space Parameterizations 3-78
Preliminary Step — Estimating State-Space Model

Orders .ot e e e e 3-79
How to Estimate State-Space Models in the GUI 3-84
How to Estimate State-Space Models at the Command

Line ... e 3-87
How to Estimate Free-Parameterization State-Space

Models o e 3-91
How to Estimate State-Space Models with Canonical

Parameterization 3-92
How to Estimate State-Space Models with Structured

Parameterization 3-94
How to Estimate the State-Space Equivalent of ARMAX

and OEModels, 3-100
Options for Frequency-Weighing Focus 3-101
Options for Initial States 3-102
Algorithms for Estimating State-Space Models 3-103

Refining Linear Parametric Models 3-104

When to Refine Models 3-104
What You Specify to Refinea Model 3-104
How to Refine Linear Parametric Models in the GUI 3-105
How to Refine Linear Parametric Models at the Command

Line ... e 3-106

Extracting Parameter Values from Linear Models 3-109

Extracting Dynamic Model and Noise Model
Separately e 3-111

Transforming Between Discrete-Time and

Continuous-Time Representations 3-113
Why Transform Between Continuous and Discrete

TIme? .o e e 3-113
Using the c2d, d2¢, and d2d Commands 3-113
Specifying Intersample Behavior 3-115
How d2c Handles Input Delays 3-115
Effects on the Noise Model 3-116

Transforming Between Linear Model
Representations00 .. 3-118

xii Contents

Subreferencing Model Objects 3-120

What Is Subreferencing?o, .. 3-120
Limitation on Supported Models 3-120
Subreferencing Specific Measured Channels 3-120
Subreferencing Measured and Noise Models 3-121
Treating Noise Channels as Measured Inputs 3-123
Concatenating Model Objects 3-125
About Concatenating Models 3-125
Limitation on Supported Models 3-125
Horizontal Concatenation of Model Objects 3-126
Vertical Concatenation of Model Objects 3-126
Concatenating Noise Spectrum Data of idfrd Objects 3-127
See AlSO v e e 3-128
Merging Model Objectsc..... 3-129

Nonlinear Black-Box Model Identification

q

About Nonlinear Model Identification 4-2
What Are Nonlinear Models? 4-2
When to Fit Nonlinear Models 4-2
Available Nonlinear Models 4-4

Preparing Data for Nonlinear Identification 4-7

Identifying Nonlinear ARX Models 4-8
Nonlinear ARX Model Extends the Linear ARX

StrUCTULE ..ttt e 4-8
Structure of Nonlinear ARX Models 4-9
Nonlinearity Estimators for Nonlinear ARX Models 4-10
Ways to Configure Nonlinear ARX Estimation 4-12
How to Estimate Nonlinear ARX Models in the GUI 4-16
How to Estimate Nonlinear ARX Models at the Command

Line 4-19
Using Linear Model for Nonlinear ARX Estimation 4-28
Validating Nonlinear ARX Models 4-35
Using Nonlinear ARX Models 4-40

xiii

Low-Level Manipulation of Nonlinear ARX Components .. 4-41

Identifying Hammerstein-Wiener Models 4-49
Applications of Hammerstein-Wiener Models 4-49
Structure of Hammerstein-Wiener Models 4-50
Nonlinearity Estimators for Hammerstein-Wiener

Modelso e 4-52
Ways to Configure Hammerstein-Wiener Estimation 4-53
Estimation Algorithm for Hammerstein-Wiener Models .. 4-55
How to Estimate Hammerstein-Wiener Models in the

GUIL e e 4-55
How to Estimate Hammerstein-Wiener Models at the

CommandLine iiiiiiiinnnen.. 4-58
Using Linear Model for Hammerstein-Wiener

Estimation it 4-64
Validating Hammerstein-Wiener Models 4-70
Using Hammerstein-Wiener Models 4-76
Low-Level Manipulation of Hammerstein-Wiener

Componentsuuiui e 4-78

Linear Approximation of Nonlinear Black-Box

Modelst e e e 4-81
Why Compute a Linear Approximation of a Nonlinear

Model? ... 4-81
Choosing Your Linear Approximation Approach 4-81
Linear Approximation of Nonlinear Black-Box Models for a

GivenInput i e 4-82
Tangent Linearization of Nonlinear Black-Box Models ... 4-82
Computing Operating Points for Nonlinear Black-Box

Models ... i 4-83

ODE Parameter Estimation (Grey-Box

Modeling)
Supported Grey-Box Models 5-2
Data Supported by Grey-Box Models 5-3

xiv Contents

Choosing idgrey or idnlgrey Model Object 5-4

Estimating Linear Grey-Box Models 5-6
Specifying the Linear Grey-Box Model Structure 5-6
Example — Representing a Grey-Box Model in an MATLAB

File ..o e 5-7
Example — Estimating a Continuous-Time Grey-Box Model

for Heat Diffusion i ivinn. 5-9
Example — Estimating a Discrete-Time Grey-Box Model

with Parameterized Disturbance 5-12

Estimating Nonlinear Grey-Box Models 5-16
Supported Nonlinear Grey-Box Models 5-16
Nonlinear Grey-Box Demos and Examples 5-16
Specifying the Nonlinear Grey-Box Model Structure 5-17
Constructing the idnlgrey Object 5-18
Using pem to Estimate Nonlinear Grey-Box Models 5-19
Options for the Estimation Algorithm 5-20

After Estimating Grey-Box Models 5-23

Time Series Identification

6

What Are Time-Series Models? 6-2
Preparing Time-Series Data 6-3
Estimating Time-Series Power Spectra 6-4
How to Estimate Time-Series Power Spectra Using the
GUIL e e e 6-4
How to Estimate Time-Series Power Spectra at the
CommandLinet iiiiiiinnn... 6-5
Estimating AR and ARMA Models 6-7
Definition of AR and ARMA Models 6-7

Estimating Polynomial Time-Series Models in the GUI . .. 6-7

xvi

Contents

Estimating AR and ARMA Models at the Command

Line ... e 6-10
Estimating State-Space Time-Series Models 6-12
Definition of State-Space Time-Series Model 6-12
Estimating State-Space Models at the Command Line ... 6-12

Example — Identifying Time-Series Models at the
Command Line oo, 6-14

Estimating Nonlinear Models for Time-Series Data ... 6-15

Recursive Model Identification

7

8

What Is Recursive Estimation? 7-2
Commands for Recursive Estimation 7-3
Algorithms for Recursive Estimation 7-6
Types of Recursive Estimation Algorithms 7-6
General Form of Recursive Estimation Algorithm 7-6
Kalman Filter Algorithm 7-8
Forgetting Factor Algorithm 7-10
Unnormalized and Normalized Gradient Algorithms 7-11
Data Segmentation 7-14
Model Analysis

Overview of Model Validation and Plots 8-2
When to Validate Modelscviina.. 8-2
Ways to Validate Models 8-2

Data for Validating Models 8-3

Supported Model Plots, 8-4
Plotting Modelsinthe GUT 8-5
Getting Advice About Models 8-7
Simulating and Predicting Model OQutput 8-8
Using a Model for Simulation and Prediction 8-8
Simulation and Prediction inthe GUI 8-11
Simulation and Prediction at the Command Line 8-16
Residual Analysis 8-21
What Is Residual Analysis? 8-21
Supported Model Typescoiiiiiiinnnen.. 8-22
What Residual Plots Show for Different Data Domains ... 8-22
Displaying the Confidence Interval 8-23
How to Plot Residuals Usingthe GUI 8-24
How to Plot Residuals at the Command Line 8-26
Example — Examining Model Residuals 8-26
Impulse and Step Response Plots 8-29
Supported Models 8-29
How Transient Response Helps to Validate Models 8-29
What Does a Transient Response Plot Show? 8-30
How to Plot Impulse and Step Response Using the GUI .. 8-31
Displaying the Confidence Interval 8-34
How to Plot Impulse and Step Response at the Command
Line ... e e 8-35
Frequency Response Plots 8-37
What Is Frequency Response? 8-37
How Frequency Response Helps to Validate Models 8-38
What Does a Frequency-Response Plot Show? 8-39
How to Plot Bode Plots Usingthe GUI 8-40
How to Plot Bode and Nyquist Plots at the Command
Line ... e 8-42
Noise Spectrum Plots 8-45
Supported Models i 8-45
What Does a Noise Spectrum Plot Show? 8-45
Displaying the Confidence Interval 8-46
How to Plot the Noise Spectrum Using the GUI 8-47
How to Plot the Noise Spectrum at the Command Line ... 8-50

xXvii

xviii

Contents

Poleand Zero Plots, 8-52

Supported Models 8-52
What Does a Pole-Zero Plot Show? 8-52
How to Plot Model Poles and Zeros Using the GUI 8-54
How to Plot Poles and Zeros at the Command Line 8-55
Reducing Model Order Using Pole-Zero Plots 8-56
Akaike’s Criteria for Model Validation 8-57
Definitionof FPE 8-57
Computing FPE i 8-58
Definition of AIC i 8-58
Computing AIC e 8-59
Computing Model Uncertainty 8-60
Why Analyze Model Uncertainty? 8-60
What Is Model Covariance?ccciveeevnnn. 8-60
Viewing Model Uncertainty Information 8-61
Troubleshooting Models 8-63
About Troubleshooting Models 8-63
Model Order Is Too Highor TooLow 8-63
Nonlinearity Estimator Produces a Poor Fit 8-64
Substantial Noise in the System 8-65
Unstable Models ...t 8-65
Missing Input Variables 8-67
Complicated Nonlinearitiesc.ccoooo 8-67
Next Steps After Getting an Accurate Model 8-68

Control Design Applications

9

Using Models with Control System Toolbox Software .. 9-2
How Control System Toolbox Software Works with
Identified Models 9-2
Using balred to Reduce Model Order 9-3
Compensator Design Using Control System Toolbox
Softwareiiiii e e e 9-3
Converting Models to LTI Objects 9-4

Viewing Model Response Using the LTI Viewer 9-5

Combining Model Objectscciiiiiiieeeo... 9-6
Example — Using System Identification Toolbox Software
with Control System Toolbox Software 9-6

System Identification Toolbox Blocks

10|

System Identification Toolbox Block Library 10-2

Opening the System Identification Toolbox Block

Library 10-3
PreparingData i, 10-4
Identifying Linear Models 10-5
Simulating Model Output 10-6

When to Use Simulation Blocks 10-6

Summary of Simulation Blocks 10-6

Specifying Initial Conditions for Simulation 10-7

Example - Simulating a Model Using Simulink
Softwareiiiiii i e e 10-9

System Identification Tool GUI

11

Steps for Using the System Identification Tool GUI ... 11-2
Starting and Managing GUI Sessions 11-3
What Is a System Identification Tool Session? 11-3
Starting a New Sessioninthe GUI 11-4
Description of the System Identification Tool Window 11-5

xix

Opening a Saved SeSSION iiiiiiiieie e 11-6

Saving, Merging, and Closing Sessions 11-6
Deleting a Sessionc.ciiiiinieeennnnn. 11-7
Getting Helpinthe GUI 11-7
Exiting the System Identification Tool GUI 11-8
Managing Modelsinthe GUI 11-9
Importing Models intothe GUI 11-9
Viewing Model Propertiesccciiiiinn... 11-10
Renaming Models and Changing Display Color 11-11
Organizing Model Icons 11-11
Deleting Modelsinthe GUI 11-12
Exporting Models from the GUI to the MATLAB
Workspace ...t e 11-13

Working with Plots in the System Identification Tool

GUIL . e e 11-15
Identifying Data Sets and Models on Plots 11-15
Changing and Restoring Default Axis Limits 11-16
Selecting Measured and Noise Channels in Plots 11-18
Grid and Line Stylesin Plots 11-19
Opening a Plot in a MATLAB Figure Window 11-19
Printing Plots i 11-19
Customizing the System Identification Tool GUI 11-20
Types of GUI Customizationcovuuu.. 11-20
Displaying Warnings While You Work 11-20
Saving Session Preferences 11-20
Modifying idlayout.m i 11-21
Index

XX Contents

Choosing Your System
Identification Approach

® “Linear Model Structures” on page 1-2

e “Nonlinear Model Structures” on page 1-4

* “Recommended Model Estimation Sequence” on page 1-5

® “Supported Models for Time- and Frequency-Domain Data” on page 1-7
® “Supported Continuous-Time and Discrete-Time Models” on page 1-10
* “Commands for Model Estimation” on page 1-12

® “Creating Model Structures at the Command Line” on page 1-14

e “Modeling Multiple-Output Systems” on page 1-24

1 Choosing Your System Identification Approach

1-2

Linear Model Structures

A linear model is often sufficient to accurately describe the system dynamics
and, in most cases, you should first try to fit linear models. Available linear
structures include transfer functions and state-space models, summarized

in the following table.

Model Type

Usage

Learn More

Process model
(idproc object)

Use this structure to
represent low-order
transfer function that
include integrator,
delay, zero, and up

to 3 poles. You can
also specify parameter
bounds.

“Identifying Low-Order
Transfer Functions
(Process Models)” on
page 3-20

State-space model
(idss object)

Use this structure

to represent known
state-space structures
and black-box
structures. You can
fix certain parameters
to known values and
estimate the remaining
parameters. If you need
to specify parameter
dependencies or
constraints, use

the grey-box model
structure.

“Identifying
State-Space Models”
on page 3-73

Linear Model Structures

Model Type

Usage

Learn More

Generalized transfer
function
(idpoly object)

Use to represent linear
transfer functions
based on the general
form input-output
polynomial form:

Ay = B u+ ¢ e
F D
where A, B, C, D and
F are polynomials with
coefficients that the
toolbox estimates from
data.

Typically, you begin
modeling using
simpler forms of
this generalized
structure (such as

ARX: Ay = Bu+e and

B .
OE: y=—u+e) and, if
necessarﬁ increase the
model complexity.

“Identifying
Input-Output
Polynomial Models”
on page 3-39

Grey-box model
(idgrey object)

Use to represent
arbitrary
parameterizations

of state-space models.
For example, you can
use this structure

to represent your
ordinary differential
or difference equation
(ODE) and to

define parameter
dependencies.

“Estimating Linear
Grey-Box Models” on
page 5-6

1-3

1 Choosing Your System Identification Approach

Nonlinear Model Structures

System Identification Toolbox provides several nonlinear black-box model
structures, which have traditionally been useful for representing dynamic

systems.
Model Type Usage Learn More
Nonlinear ARX model Use to represent “Identifying Nonlinear

(idnlarx object)

nonlinear extensions
of linear models. This
structure allows you

to model complex
nonlinear behavior
using flexible nonlinear
functions, such as
wavelet and sigmoid
networks.

ARX Models” on page
4-8

Linear models

with input/output
nonlinearities, or
Hammerstein-Wiener
model

(idnlhw object)

Use to represent linear
models with static
nonlinearities.

“Identifying
Hammerstein-Wiener
Models” on page 4-49

Nonlinear grey-box
model
(idnlgrey object)

Use to represent
nonlinear ODEs with
unknown parameters.

“Estimating Nonlinear
Grey-Box Models” on
page 5-16

Recommended Model Estimation Sequence

Recommended Model Estimation Sequence

System identification is an iterative process, where you identify models
with different structures from data and compare model performance. You
start by estimating the parameters of simple model structures. If the model
performance is poor, you gradually increase the complexity of the model
structure. Ultimately, you choose the simplest model that best describes
the dynamics of your system.

Another reason to start with simple model structures is that higher-order
models are not always more accurate. Increasing model complexity increases
the uncertainties in parameter estimates and typically requires more data
(which is common in the case of nonlinear models).

Note Model structure is not the only factor that determines model accuracy.
If your model is poor, you might need to preprocess your data by removing
outliers or filtering noise. For more information, see “Ways to Process Data
for System Identification” on page 2-4.

Estimate impulse-response and frequency-response models first to gain
insight into the system dynamics and assess whether a linear model is
sufficient. Then, estimate parametric models in the following order:

1 ARX polynomial and state-space models provide the simplest structures.
These models let you estimate the model order and noise dynamics.

In the System Identification Tool GUI. Select to estimate the ARX
linear parametric model and the state-space model using the N4SID
method.

At the command line. Use the arx and the n4sid commands.

For more information, see “Identifying Input-Output Polynomial Models”
on page 3-39 and “Identifying State-Space Models” on page 3-73.

2 ARMAX and BdJ polynomial models provide more complex structures and
require iterative estimation. Try several model orders and keep the model
orders as low as possible.

1-5

1 Choosing Your System Identification Approach

1-6

In the System Identification Tool GUI. Select to estimate the BJ and
ARMAX linear parametric models.

At the command line. Use the bj or armax commands.

”»

For more information, see “Identifying Input-Output Polynomial Models
on page 3-39.

3 Nonlinear ARX or Hammerstein-Wiener models provide nonlinear
structures. For more information, see Chapter 4, “Nonlinear Black-Box
Model Identification”.

For general information about choosing you model strategy, see “About
System Identification”. For information about validating models, see
“Overview of Model Validation and Plots” on page 8-2.

Supported Models for Time- and Frequency-Domain Data

Supported Models for Time- and Frequency-Domain Data

In this section...

“Supported Models for Time-Domain Data” on page 1-7

“Supported Models for Frequency-Domain Data” on page 1-8

Supported Models for Time-Domain Data

Continuous-Time Models
You can directly estimate the following types of continuous-time models:

¢ Low-order transfer functions. See “Identifying Low-Order Transfer
Functions (Process Models)” on page 3-20.

¢ Input-output polynomial models. See “Identifying Input-Output Polynomial
Models” on page 3-39.

® State-space models. See “Identifying State-Space Models” on page 3-73.

To get a linear, continuous-time model of arbitrary structure for time-domain
data, you can estimate a discrete-time model, and then use d2c to transform
it to a continuous-time model.

Discrete-Time Models

You can estimate all linear and nonlinear models supported by the

System Identification Toolbox product as discrete-time models, except the
continuous-time transfer functions (process models). For more information
about process models, see “Identifying Low-Order Transfer Functions (Process
Models)” on page 3-20.

ODEs (Grey-Box Models)

You can estimate both continuous-time and discrete-time models from
time-domain data for linear and nonlinear differential and difference
equations. See Chapter 5, “ODE Parameter Estimation (Grey-Box Modeling)”.

1 Choosing Your System Identification Approach

1-8

Nonlinear Models

You can estimate discrete-time Hammerstein-Wiener and nonlinear ARX
models from time-domain data. See Chapter 4, “Nonlinear Black-Box Model
Identification”.

You can also estimate nonlinear grey-box models from time-domain data. See
“Estimating Nonlinear Grey-Box Models” on page 5-16.

Supported Models for Frequency-Domain Data
There are two types of frequency-domain data:

¢ Continuous-time data

® Discrete-time data

You specify frequency-domain data as continuous- or discrete-time when you
either import data into the System Identification Tool GUI or create a System
Identification Toolbox data object. For more information about representing
your data as System Identification Toolbox data objects, see Chapter 2, “Data
Import and Processing”.

To designate discrete-time data, you set the sampling interval of the data to
the experimental data sampling interval. To designate continuous-time data,
you must set the sampling interval of the data to zero. Setting the sampling
interval to zero corresponds to taking a Fourier transform of continuous-time
data.

Continuous-Time Models
You can estimate the following types of continuous-time models directly:

® Low-order transfer functions. See “Identifying Low-Order Transfer
Functions (Process Models)” on page 3-20.

¢ Input-output polynomial models. See “Identifying Input-Output Polynomaial
Models” on page 3-39.

® State-space models.

From continuous-time frequency-domain data, you can estimate
continuous-time state-space models. From discrete-time frequency-domain

Supported Models for Time- and Frequency-Domain Data

data, you can estimate continuous-time black-box models with canonical
parameterization. See “Identifying State-Space Models” on page 3-73.

To get a linear, continuous-time model of arbitrary structure for
frequency-domain data, you can estimate a discrete-time model and use d2c
to transform it to a continuous-time model.

Discrete-Time Models

You can estimate only output-error (OE) polynomial models using
frequency-domain data. See “Identifying Input-Output Polynomial Models”
on page 3-39.

Other linear model structures include noise models, which are not supported
for frequency-domain data.

ODEs (Grey-Box Models)

For linear grey-box models, you can estimate both continuous-time and
discrete-time models from frequency-domain data.

Nonlinear grey-box models are supported only for time-domain data.

See Chapter 5, “ODE Parameter Estimation (Grey-Box Modeling)”.

Nonlinear Black-Box Models

Frequency-domain data is not relevant to nonlinear black-box models, which
support only time-domain data.

1-9

1 Choosing Your System Identification Approach

Supported Continuous-Time and Discrete-Time Models

For linear and nonlinear ODEs (grey-box models), you can specify any
ordinary differential or difference equation to represent your continuous-time
or discrete-time model in state-space form, respectively. In the linear case,
both time-domain and frequency-domain data are supported. In the nonlinear
case, only time-domain data is supported.

For black-box models, the following tables summarize supported
continuous-time and discrete-time models.

Supported Continuous-Time Models

Model Type Description
Low-order transfer functions Estimate low-order process models for up to three free poles
(process models) from either time- or frequency-domain data.

Linear input-output polynomial To get a linear, continuous-time model of arbitrary

models structure from time-domain data, you can estimate a
discrete-time model, and then use d2¢ to transform it into a
continuous-time model.

For frequency-domain data, you can directly estimate only
the ARX and output-error (OE) continuous-time polynomial
models by setting the sampling interval of the data to 0.
Other structures include noise models and are not supported
for frequency-domain data.

State-space models To get a linear, continuous-time model of arbitrary
structure for time-domain data, you can estimate a
discrete-time model, and then use d2c to transform it into a
continuous-time model.

For frequency-domain data, you can estimate
continuous-time state-space models directly.

Linear ODEs (grey-box models Estimate ordinary differential equations (ODEs) from either
time- or frequency-domain data.

Nonlinear ODEs (grey-box) Estimate arbitrary differential equations (ODEs) from
models time-domain data.

1-10

Supported Continuous-Time and Discrete-Time Models

Supported Discrete-Time Models

Model Type

Description

Linear, input-output polynomial
models

Estimate arbitrary-order, linear parametric models from
time- or frequency-domain data.

To get a discrete-time model, your data sampling interval
must be set to the (nonzero) value you used to sample in
your experiment.

Nonlinear black-box models

Estimate from time-domain data only.

Linear ODEs (grey-box) models

Estimate ordinary difference equations from time- or
frequency-domain data.

Nonlinear ODEs (grey-box)
models

Estimate ordinary difference equations from time-domain
data.

1-11

1 Choosing Your System Identification Approach

1-12

Commands for Model Estimation

The quickest way to both construct a model object and estimate the model
parameters is to use estimation commands.

Note For ODEs (grey-box models), you must first construct the model
structure and then apply an estimation command to the resulting model
object.

For ARMAX, Box-Jenkins, and Output-Error Models—which you can only
estimate using the iterative prediction-error method—use the armax, bj, and
oe estimation commands, respectively. For more information about choosing
the models to estimate first, see “Recommended Model Estimation Sequence”
on page 1-5.

The following table summarizes System Identification Toolbox estimation
commands. For detailed information about using each command, see the

corresponding reference page.

Commands for Constructing and Estimating Models

Model Type Estimation Commands
Continuous-time low-order | pem
transfer functions (process
models)
Linear input-output armax (ARMAX only)
polynomial models arx (ARX only)

bj (BJ only)

iv4 (ARX only)

oe (OE only)

pem (for all models)
State-space models n4sid

pem

Commands for Model Estimation

Commands for Constructing and Estimating Models (Continued)

Model Type Estimation Commands
Linear time-series models ar
arx (for multiple outputs)
ivar
Nonlinear ARX models nlarx
Hammerstein-Wiener nlhw
models

1-13

1 Choosing Your System Identification Approach

1-14

Creating Model Structures at the Command Line

In this section...

“About System Identification Toolbox Model Objects” on page 1-14

“When to Construct a Model Structure Independently of Estimation” on
page 1-15

“Commands for Constructing Model Structures” on page 1-16

“Model Properties” on page 1-17

“See Also” on page 1-23

About System Identification Toolbox Model Objects

Objects are based on model classes. Each class is a blueprint that defines the
following information about your model:

® How the object stores data

® Which operations you can perform on the object

This toolbox includes nine classes for representing models. For example,
idpoly represents linear input-output polynomial models, and idss
represents linear state-space models. For a complete list of available model
objects, see “Commands for Constructing Model Structures” on page 1-16.

Model properties define how a model object stores information. Model objects
store information about a model, including the mathematical form of a
model, names of input and output channels, units, names and values of
estimated parameters, parameter uncertainties, algorithm specifications, and
estimation information. For example, the idpoly model class has a property
called InputName for storing one or more input channel names. Different
model objects have different properties.

The allowed operations on an object are called methods. In the System

Identification Toolbox product, some methods have the same name but apply
to multiple model objects. For example, the method bode creates a bode plot
for all linear model objects. However, other methods are unique to a specific

Creating Model Structures at the Command Line

model object. For example, the estimation method n4sid is unique to the
state-space model object idss.

Every class has a special method for creating objects of that class, called the
constructor. Using a constructor creates an instance of the corresponding
class or instantiates the object. The constructor name is the same as the class
name. For example, idpoly is both the name of the class representing linear
black-box polynomial models and the name of the constructor for instantiating
the model object.

For a tutorial about estimating models at the command line, see “Tutorial —
Identifying Linear Models Using the Command Line” in System Identification
Toolbox Getting Started Guide.

When to Construct a Model Structure Independently
of Estimation

You use model constructors to create a model object at the command line by
specifying all required model properties explicitly.

You must construct the model object independently of estimation when you
want to:

e Simulate a model
¢ Analyze a model

® Specify an initial guess for specific model parameter values before
estimation

In most cases, you can use the estimation commands to both construct

and estimate the model—without having to construct the model object
independently. For example, the estimation command pem lets you specify
both the model structure with unknown parameters and the estimation
algorithm. For information about how to both construct and estimate models
with a single command, see “Commands for Model Estimation” on page 1-12.

In case of grey-box models, you must always construct the model object first
and then estimate the parameters of the ordinary differential or difference
equation. For more information, see Chapter 5, “ODE Parameter Estimation
(Grey-Box Modeling)”.

1-15

1 Choosing Your System Identification Approach

Commands for Constructing Model Structures

The following table summarizes the model constructors available in the
System Identification Toolbox product for representing various types of

models.

After model estimation, you can recognize the corresponding model objects
in the MATLAB® Workspace browser by their class names. The name of the
constructor matches the name of the object it creates.

For information about how to both construct and estimate models with a
single command, see “Commands for Model Estimation” on page 1-12.

Summary of Model Constructors

Model Constructor

Resulting Model Class

Single or Multiple Outputs?

idarx

Parametric multiple-output
ARX models. Also
represents nonparametric
transient-response models.

Single- or multiple-output
models.

idfrd

Nonparametric
frequency-response model.

Single- or multiple-output
models.

idproc

Continuous-time, low-order
transfer functions (process
models).

Single-output models only.

idpoly

Linear input-output polynomial
models:

e ARX

e ARMAX

¢ Qutput-Error

* Box-Jenkins

Single-output models only.

idss

Linear state-space models.

Single- or multiple-output
models.

1-16

Creating Model Structures at the Command Line

Summary of Model Constructors (Continued)

Model Constructor

Resulting Model Class

Single or Multiple Outputs?

idgrey

Linear ordinary differential or
difference equations (grey-box
models). You write a function
that translates user parameters
to state-space matrices.

Single- and multiple-output
models.

idnlgrey

Nonlinear ordinary differential
or difference equation (grey-box
models). You write a function
or MEX-file to represent the
set of first-order differential or
difference equations.

Supports single- and
multiple-output models.

idnlarx

Nonlinear ARX models, which
define the predicted output as a
nonlinear function of past inputs
and outputs.

Single- or multiple-output
models.

idnlhw

Nonlinear Hammerstein-Wiener
models, which include a linear
dynamic system with nonlinear
static transformations of inputs
and outputs.

Single- or multiple-output
models. Does not support time
series.

For more information about when to use these commands, see “When to
Construct a Model Structure Independently of Estimation” on page 1-15.

Model Properties

“Categories of Model Properties” on page 1-18
“Specifying Model Properties for Estimation” on page 1-19
“Viewing Model Properties and Estimated Parameters” on page 1-20

“Getting Help on Model Properties at the Command Line” on page 1-22

1-17

1 Choosing Your System Identification Approach

Categories of Model Properties

The way a model object stores information is defined by the properties of the
corresponding model class.

Each model object has properties for storing information that are relevant
only to that specific model type. However, the idarx, idgrey, idpoly, idproc,
and idss model objects are based on the idmodel superclass and inherit all
idmodel properties.

Similarly, the nonlinear models idnlarx, idnlhw, and idnlgrey are based on
the idnlmodel superclass and inherit all idnlmodel properties.

In general, all nonlinear model objects have properties that belong to the
following categories:

e Names of input and output channels, such as InputName and OutputName
e Sampling interval of the model, such as Ts

¢ Units for time or frequency

® Model order and mathematical structure (for example, ODE or
nonlinearities)

® Properties that store estimation results and model uncertainty
e User comments, such as Notes and Userdata
¢ Estimation algorithm information

= Algorithm

Structure includes fields that specify the estimation method. Algorithm
includes another structure, called Advanced, which provides additional
flexibility for setting the search algorithm. Different fields apply to
different estimation techniques.

For linear parametric models, Algorithm specifies the frequency
weighing of the estimation using the Focus property.

Note Algorithm does not apply to idfrd models.

1-18

Creating Model Structures at the Command Line

= EstimationInfo

Structure includes read-only fields that describe the estimation data set,
quantitative model quality measures, search termination conditions,
how the initial states are handled, and any warnings encountered during
the estimation.

For information about getting help on object properties, see “Getting Help on
Model Properties at the Command Line” on page 1-22.

Specifying Model Properties for Estimation
If you are estimating a new model, you can specify model properties directly
in the estimator syntax. For a complete list of model estimation commands,
see “Commands for Model Estimation” on page 1-12.

When using the commands that let you both construct and estimate a model,
you can specify all top-level model properties in the estimator syntax.
Top-level properties are those listed when you type get (object_name). You
can also specify the top-level fields of the Algorithm structure directly in
the estimator using property-value pairs—such as focus in the previous
example—without having to define the structure fields first.

The following commands load the sample data, z8, construct an ARMAX
model, and estimate the model parameters. The arguments of the armax
estimator specify model properties as property-value pairs.

load iddata8
m_armax=armax(z8, 'na',4,...

'nb',[3 2 3],...
‘'nc',4,...

'nk',[0 0 O],...

'focus', 'simulation',...
‘covariance', 'none',...

'tolerance',1e-5,...
'maxiter',50);

focus, covariance, tolerance, and maxiter are fields in the Algorithm
model property and specify aspects of the estimation algorithm.

1-19

1 Choosing Your System Identification Approach

1-20

For linear models, you can use a shortcut to specify the second-level
Algorithm properties, such as Advanced. With this syntax, you can reference
the structure fields by name without specifying the structure to which these
fields belong.

However, when estimating nonlinear black-box models, you must set the
specific fields of the Advanced Algorithm structure and the nonlinearity
estimators before estimation. For example, suppose you want to set the value
of the wavenet object property Options, which is a structure. The following
commands set the Options values before estimation and include the modified
wavenet object in the estimator:

o°

Define wavenet object with defaul properties
= wavenet;

Specify variable to represent Options field
= W.Options;

Modify values of specific Options fields
.MaxLevels = 5 ;

.DilationStep = 2;

Estimate model using new Options settings

= nlarx(data,[2 2 1],wavenet('options',0))

P O O & O X =

=

where 0 specifies the values of the Options structure fields and M is the
estimated model. For more information about these and other commands,
see the corresponding reference page.

Viewing Model Properties and Estimated Parameters

To view all the properties and values of any model object, use the get
command. For example, type the following at the prompt to load sample data,
compute an ARX model, and list the model properties:

load iddata8
m_arx=arx(z8,[4 3 2 3 0 0 0]);
get(m_arx)

To access a specific property, use dot notation. For example, to view the A
matrix containing the estimated parameters in the previous model, type the
following command:

m_arx.a

Creating Model Structures at the Command Line

ans =
1.0000 -0.8441 -0.1539 0.2278 0.1239

Similarly, to access the uncertainties in these parameter estimates, type
the following command:

m_arx.da
ans =
0 0.0357 0.0502 0.0438 0.0294

Property names are not case sensitive. You do not need to type the entire
property name if the first few letters uniquely identify the property.

To change property values for an existing model object, use the set command
or dot notation. For example, to change the input delays for all three input
channels to [1 1 1], type the following at the prompt:

set(m_arx, 'nk',[1 1 1])
or equivalently
m_arx.nk = [1 1 1]

Some model properties, such as Algorithm, are structures. To access the
fields in this structure, use the following syntax:

model.algorithm.PropertyName

where PropertyName represents any of the Algorithm fields. For example,
to change the maximum number of iterations using the MaxIter property,
type the following command:

m_arx.algorithm.MaxIter=50
To verify the new property value, type the following:

m_arx.algorithm.MaxIter

Note PropertyName refers to fields in a structure and is case sensitive. You
must type the entire property name. Use the Tab key when typing property
names to get completion suggestions.

1-21

1 Choosing Your System Identification Approach

Getting Help on Model Properties at the Command Line

If you need to learn more about model properties while working at the
command line, you can use the idprops command to list the properties and
values for each object.

Some model objects are based on the superclasses idmodel and idnlmodel
and inherit the properties of these superclasses. For such model objects, you
must independently look up the properties for both the model object and for
its superclass.

The following table summarizes the commands for getting help on object
properties.

Help Commands for Model Properties

Model Class

Help Commands

idarx idprops idarx

Also inherits properties from idmodel.
idfrd idprops idfrd
idnlmodel idprops idnlmodel
idmodel idprops idmodel

idprops idmodel Algorithm

idprops idmodel EstimationInfo

Also see the Algorithm and EstimationInfo reference page.
idproc idprops idproc

Also inherits properties from idmodel.
idpoly idprops idpoly

Also inherits properties from idmodel.
idss idprops idss

Also inherits properties from idmodel.
idgrey idprops idgrey

Also inherits properties from idmodel.
idnlgrey idprops idnlgrey

idprops idnlgrey Algorithm
idprops idnlgrey EstimationInfo
Also inherits properties from idnlmodel.

1-22

Creating Model Structures at the Command Line

Help Commands for Model Properties (Continued)

Model Class

Help Commands

idnlarx idprops idnlarx
idprops idnlarx Algorithm
idprops idnlarx EstimationInfo
Also inherits properties from idnlmodel.
idnlhw idprops idnlhw

idprops idnlhw Algorithm
idprops idnlhw EstimationInfo
Also inherits properties from idnlmodel.

See Also

Validate each model directly after estimation to help fine-tune your modeling
strategy. When you do not achieve a satisfactory model, you can try a different
model structure and order, or try another identification algorithm. For more
information about validating and troubleshooting models, see “Overview of
Model Validation and Plots” on page 8-2.

1-23

1 Choosing Your System Identification Approach

1-24

Modeling Multiple-Output Systems

In this section...

“About Modeling Multiple-Output Systems” on page 1-24
“Modeling Multiple Outputs Directly” on page 1-25

“Modeling Multiple Outputs as a Combination of Single-Output Models”
on page 1-25

“Improving Multiple-Output Estimation Results by Weighing Outputs
During Estimation” on page 1-26

About Modeling Multiple-Output Systems

You can estimate multiple-output model directly using all the inputs and
outputs, or you can try building models for subsets of the most important
input and output channels. To learn more about each approach, see:

® “Modeling Multiple Outputs Directly” on page 1-25

® “Modeling Multiple Outputs as a Combination of Single-Output Models”
on page 1-25

Modeling multiple-output systems is more challenging because input/output
couplings require additional parameters to obtain a good fit and involve more
complex models. In general, a model is better when more data inputs are
included during modeling. Including more outputs typically leads to worse
simulation results because it is harder to reproduce the behavior of several
outputs simultaneously.

If you know that some of the outputs have poor accuracy and should be
less important during estimation, you can control how much each output
is weighed in the estimation. For more information, see “Improving
Multiple-Output Estimation Results by Weighing Outputs During
Estimation” on page 1-26.

Modeling Multiple-Output Systems

Modeling Multiple Outputs Directly

You can estimate the following types of models for multiple-output data:

® Impulse- and step-response models

* Frequency-response models

¢ Linear ARX models

® State-space models

® Nonlinear ARX and Hammerstein-Wiener models

e Linear and nonlinear ODEs

Tip Estimating multiple-output state-space models directly generally
produces better results than estimating other types of multiple-output models
directly.

Modeling Multiple Outputs as a Combination of
Single-Output Models

You may find that it is harder for a single model to explain the behavior of
several outputs. If you get a poor fit estimating a multiple-output model
directly, you can try building models for subsets of the most important input
and output channels.

Use this approach when no feedback is present in the dynamic system and
there are no couplings between the outputs. If you are unsure about the
presence of feedback, see “How to Analyze Data Using the advice Command”
on page 2-87.

To construct partial models, use subreferencing to create partial data sets,
such that each data set contains all inputs and one output. For more
information about creating partial data sets, see the following sections in the
System Identification Toolbox User’s Guide:

¢ For working in the System Identification Tool GUI, see “Creating Data Sets
from a Subset of Signal Channels” on page 2-33.

1-25

1 Choosing Your System Identification Approach

1-26

® For working at the command line, see the “Subreferencing iddata Objects”
on page 2-57.

After validating the single-output models, use vertical concatenation to
combine these partial models into a single multiple-output model. For more
information about concatenation, see “Concatenating iddata Objects” on page
2-66 or “Concatenating idfrd Objects” on page 2-73.

You can try refining the concatenated multiple-output model using the
original (multiple-output) data set.

Improving Multiple-Output Estimation Results by
Weighing Outputs During Estimation

When estimating linear and nonlinear black-box models for multiple-output
systems, you can control the relative importance of output channels during
the estimation process. The ability to control how much each output is
weighed during estimation is useful when some of the measured outputs
have poor accuracy or should be treated as less important during estimation.
For example, if you have already modeled one output well, you might want
to focus the estimation on modeling the remaining outputs. Similarly, you
might want to refine a model for a subset of outputs.

You can specify output weights directly in the estimation command using
the Criterion and Weighting fields of the Algorithm property. You must
set the Criterion field to Trace, and set the Weighting field to the matrix
that contains the output weights. The Trace criterion minimizes the weighted
sum of the prediction errors using the weights specified by Weighting.

The following code snippet shows how to specify the Criterion and Weighting
Algorithm fields as part of the pem command:

model=pem(z,2, 'criterion', 'trace', 'weighting',diag(Q,1))

where Q is a vector of positive values and the higher values for outputs to be
emphasized more during estimation.

You set Weighting to a positive semi-definite symmetric matrix of size equal
to number of outputs. By default, Weighting is an identity matrix, which
means that all outputs are weighed equally during estimation.

Modeling Multiple-Output Systems

For more information about these Algorithm fields for linear estimation, see
the Algorithm Properties reference page. For more information about
the Algorithm fields for nonlinear estimation, see the idnlarx and idnlhw
reference pages.

Note For multiple-output idnlarx models containing neuralnet or
treepartition nonlinearity estimators, output weighting is ignored because
each output is estimated independently.

1-27

1 Choosing Your System Identification Approach

1-28

Data Import and Processing

e “Types of Data You Can Model” on page 2-2

e “Ways to Process Data for System Identification” on page 2-4
e “Requirements on Data Sampling” on page 2-6

¢ “‘Importing Data into the MATLAB Workspace” on page 2-7
¢ “‘Importing Data into the GUI” on page 2-14

® “Representing Time- and Frequency-Domain Data Using iddata Objects”
on page 2-49

¢ “Representing Frequency-Response Data Using idfrd Objects” on page 2-69
¢ “Analyzing Data Quality” on page 2-78

e “Selecting Subsets of Data” on page 2-89

¢ “Handling Missing Data and Outliers” on page 2-93

¢ “Handling Offsets and Trends in Data” on page 2-97

e “Resampling Data” on page 2-102

e “Filtering Data” on page 2-109

® “Generating Data Using Simulation” on page 2-117

¢ “Transforming Between Time- and Frequency-Domain Data” on page 2-121

e “Manipulating Complex-Valued Data” on page 2-133

2 Data Import and Processing

2-2

Types of Data You Can Model

System Identification Toolbox software supports estimation of linear models
from both time- and frequency-domain data. For nonlinear models, this
toolbox supports only time-domain data.

The data can have single or multiple inputs and outputs, and can be either
real or complex.

Your data should be sampled at discrete and uniformly spaced time instants
to obtain an input sequence

u={u(1),u2TD),....u(NT)}
and a corresponding output sequence

y=y(D),y2T),....y(ND);

u(t) and y(t) are the values of the input and output signals at time £,
respectively.

This toolbox supports modeling both single- or multiple-channel input-output
data or time-series data.

Supported Data Description

Time-domain I/O data One or more input variables u(t) and one
or more output variables y(t), sampled as a
function of time. Time-domain data can be
either real or complex

Time-series data Contains one or more outputs y(¢) and no
measured input. Can be time-domain or
frequency-domain data.

Types of Data You Can Model

Supported Data Description

Frequency-domain data Fourier transform of the input and output
time-domain signals.

Frequency-response data Complex frequency-response values for a
linear system characterized by its transfer
function G, measurable directly using a
spectrum analyzer. Also called frequency
function data.

Note If your data is complex valued, see “Manipulating Complex-Valued
Data” on page 2-133 for information about supported operations for complex

data.

2-3

2 Data Import and Processing

Ways to Process Data for System Identification

Before you can perform any task in this toolbox, your data must be in the
MATLAB workspace. You can import the data from external data files or
manually create data arrays at the command line. For more information
about importing data, see “Importing Data into the MATLAB Workspace”
on page 2-7.

The following tasks help to prepare your data for identifying models from data:
Represent data for system identification

You can represent data in the format of this toolbox by doing one of the
following:

® For working in the GUI, import data into the System Identification Tool
GUL
See “Importing Data into the GUI” on page 2-14.

® For working at the command line, create an iddata or idfrd object.

For time-domain or frequency-domain data, see “Representing Time- and
Frequency-Domain Data Using iddata Objects” on page 2-49.

For frequency-response data, see “Representing Frequency-Response Data
Using idfrd Objects” on page 2-69.

® To simulate data with and without noise, see “Generating Data Using
Simulation” on page 2-117.
Analyze data quality

You can analyze your data by doing either of the following:

® Plotting data to examine both time- and frequency-domain behavior.
See “Analyzing Data Quality” on page 2-78.

e Using the advice command to analyze the data for the presence of constant
offsets and trends, delay, possible feedback, and signal excitation levels.

See “How to Analyze Data Using the advice Command” on page 2-87.

Ways to Process Data for System Identification

Preprocess data

Review the data characteristics for any of the following features to determine
if there is a need for preprocessing:

e Missing or faulty values (also known as outliers). For example, you might
see gaps that indicate missing data, values that do not fit with the rest of
the data, or noninformative values.

See “Handling Missing Data and Outliers” on page 2-93.
® Offsets and drifts in signal levels (low-frequency disturbances).

See “Handling Offsets and Trends in Data” on page 2-97 for information
about subtracting means and linear trends, and “Filtering Data” on page
2-109 for information about filtering.

¢ High-frequency disturbances above the frequency interval of interest for
the system dynamics.

See “Resampling Data” on page 2-102 for information about decimating and
interpolating values, and “Filtering Data” on page 2-109 for information
about filtering.

Select a subset of your data
You can use data selection as a way to clean the data and exclude parts
with noisy or missing information. You can also use data selection to create

independent data sets for estimation and validation.

To learn more about selecting data, see “Selecting Subsets of Data” on page
2-89.

Combine data from multiple experiments

You can combine data from several experiments into a single data set. The
model you estimate from a data set containing several experiments describes
the average system that represents these experiments.

To learn more about creating multiple-experiment data sets, see “Creating

Multiexperiment Data Sets in the GUI” on page 2-35 or “Creating
Multiexperiment Data at the Command Line” on page 2-55.

2-5

2 Data Import and Processing

2-6

Requirements on Data Sampling

A sampling interval is the time between successive data samples.
The System Identification Tool GUI only supports uniformly sampled data.

The System Identification Toolbox product provides limited support for
nonuniformly sampled data. For more information about specifying uniform
and nonuniform time vectors, see “Constructing an iddata Object for
Time-Domain Data” on page 2-50.

Importing Data into the MATLAB® Workspace

Importing Data into the MATLAB Workspace

In this section...

“Importing Time-Domain Data into MATLAB” on page 2-7
“Importing Time-Series Data into MATLAB” on page 2-8
“Importing Frequency-Domain Data into MATLAB” on page 2-9

“Importing Frequency-Response Data into MATLAB” on page 2-11

Importing Time-Domain Data into MATLAB

Time-domain data consists of one or more input variables u(t) and one or more
output variables y(¢), sampled as a function of time. If there is no output data,
see “Importing Time-Series Data into MATLAB” on page 2-8.

You must import your time-domain data into the MATLAB workspace as
the following variables:

¢ Input data

= For single-input/single-output (SISO) data, the input must be a column
vector.

= For a data set with IV, inputs and IV, samples (measurements), the input
is an N;-by-N, matrix.

¢ Qutput data

= For single-input/single-output (SISO) data, the output must be a column
vector.

= For a data set with Ny outputs and N, samples (measurements), the
output is an NT-by-Ny matrix.

® Sampling time interval

If you are working with uniformly sampled data, use the actual sampling
interval from your experiment. Each data value is assigned a sample time,
which is calculated from the start time and the sampling interval. If you
are working with nonuniformly sampled data at the command line, you
can specify a vector of time instants using the iddata SamplingInstants

2 Data Import and Processing

property, as described in “Constructing an iddata Object for Time-Domain
Data” on page 2-50.

For more information about importing data into the MATLAB workspace, see
MATLAB Data Import and Export.

After you import data, you can import it into the System Identification Tool
GUI or create a data object for working at the command line. For more
information about importing data into the GUI, see “Importing Time-Domain
Data into the GUI” on page 2-16. To learn more about creating a data object,
see “Representing Time- and Frequency-Domain Data Using iddata Objects”
on page 2-49.

Importing Time-Series Data into MATLAB

Time-series data is time-domain or frequency-domain data that consist of one
or more outputs y(¢) with no corresponding input.

You must import your time-series data into the MATLAB workspace as the
following variables:

® Qutput data

= For single-input/single-output (SISO) data, the output must be a column
vector.

= For a data set with Ny outputs and N, samples (measurements), the
output is an NT-by-Ny matrix.

® Sampling time interval

= If you are working with uniformly sampled data, use the actual
sampling interval in your experiment. Each data value is assigned a
sample time, which is calculated from the start time and the sampling
interval. If you are working with nonuniformly sampled data at the
command line, you can specify a vector of time instants using the iddata
SamplingInstants property, as described in “Constructing an iddata
Object for Time-Domain Data” on page 2-50.

For more information about importing data into the MATLAB workspace, see
MATLAB Data Import and Export.

Importing Data into the MATLAB® Workspace

After you import data, you can import it into the System Identification Tool
GUI or create a data object for working at the command line. For more
information about importing data into the GUI, see “Importing Time-Domain
Data into the GUI” on page 2-16. To learn more about creating a data object,
see “Representing Time- and Frequency-Domain Data Using iddata Objects”
on page 2-49.

For information about estimating time-series model parameters, see Chapter
6, “Time Series Identification”.

Importing Frequency-Domain Data into MATLAB

® “What Is Frequency-Domain Data?’ on page 2-9
¢ “How to Import Frequency-Domain Data into MATLAB” on page 2-10

What Is Frequency-Domain Data?

Frequency-domain data is the Fourier transform of the input and output
time-domain signals. For continuous-time signals, the Fourier transform over
the entire time axis is defined as follows:

Y(iw) = j y()e Wt gy

—oo

Uliw) = &= j u(t)e Wt dt

In the context of numerical computations, continuous equations are replaced
by their discretized equivalents to handle discrete data values. For a
discrete-time system with a sampling interval T, the frequency-domain output
Y(e*) and input U(e*) is the time-discrete Fourier transform (TDFT):

. N .
Y(ele) — TZ y(kT)e—lwkT
k=1

In this example, k = 1,2,...,N, where N is the number of samples in the
sequence.

2-9

2 Data Import and Processing

2-10

Note This form only discretizes the time. The frequency is continuous.

In practice, the Fourier transform cannot be handled for all continuous
frequencies and you must specify a finite number of frequencies. The discrete
Fourier transform (DFT) of time-domain data for N equally spaced frequencies
between 0 and the sampling frequency 2m/N is:

. N 4
YT =Y ykT)e ™ *
k=1

w, =2% n=012,..,N-1

The DFT is useful because it can be calculated very efficiently using the fast
Fourier transform (FFT) method. Fourier transforms of the input and output
data are complex numbers.

How to Import Frequency-Domain Data into MATLAB
You must import your frequency-domain data as the following variables:

® Input data
= For single-input/single-output (SISO) data, the input u must be a column
vector containing the values u(eiwkT) for k=1, 2, ..., Nf, where Nf is the
number of frequencies.

= For a data set with N, inputs and N, frequencies, the input is an
Nyby-N, matrix.

¢ Qutput data
= For single-input/single-output (SISO) data, the output y must be a

column vector containing the values y(eiwkT) for k=1, 2, ..., Nf, where

N, is the number of frequencies.

= For a data set with N, outputs and N, frequencies, the output is an
Nby-N, matrix.

Importing Data into the MATLAB® Workspace

* Frequency values

Must be a column vector.

For more information about importing data into the MATLAB workspace, see
MATLAB Data Import and Export.

After you import data, you can import it into the System Identification

Tool GUI or create a data object for working at the command line. For
more information about importing data into the GUI, see “Importing
Frequency-Domain Data into the GUI” on page 2-19. To learn more about
creating a data object, see “Representing Time- and Frequency-Domain Data
Using iddata Objects” on page 2-49.

Importing Frequency-Response Data into MATLAB

¢ “What Is Frequency-Response Data?” on page 2-11

¢ “How to Import Frequency-Response Data into the Software” on page 2-12

What Is Frequency-Response Data?

Frequency-response data, also called frequency-function data, consists of
complex frequency-response values for a linear system characterized by

its transfer function G. Frequency-response data tells you how the system
handles sinusoidal inputs. You can measure frequency-response data values
directly using a spectrum analyzer, for example, which provides a compact
representation of the input-output relationship (compared to storing input
and output independently).

The transfer function G is an operator that takes the input u of a linear
system to the output y:

y=Gu

For a continuous-time system, the transfer function relates the Laplace
transforms of the input U(s) and output Y(s):

Y(s) = G(s)U(s)

2-11

2 Data Import and Processing

2-12

In this case, the frequency function G(iw) is the transfer function evaluated
on the imaginary axis s=iw.

For a discrete-time system sampled with a time interval T, the transfer
function relates the Z-transforms of the input U(z) and output Y(2):

Y(2) = G(2)U(2)

In this case, the frequency function G(e*7) is the transfer function G(z)
evaluated on the unit circle. The argument of the frequency function G(e®7)
is scaled by the sampling interval 7' to make the frequency function periodic

with the sampling frequency 2% .

When the input to the system is a sinusoid of a specific frequency, the output

is also a sinusoid with the same frequency. The amplitude of the output is |G|
times the amplitude of the input. The phase of the shifted from the input by

¢=arg(G. G is evaluated at the frequency of the input sinusoid.

Frequency-response data represents a (nonparametric) model of the
relationship between the input and the outputs as a function of frequency.
You might use such a model, which consists of a table or plot of values, to
study the system frequency response. However, this model is not suitable for
simulation and prediction. You should create parametric model from the
frequency-response data.

How to Import Frequency-Response Data into the Software
There are two ways to represent frequency-response data for system
identification. The first approach lets you manipulate the data using both
System Identification Tool GUI and the command line. The second approach
is only used for working with data in the System Identification Tool GUI.

You must import your frequency-response data into the MATLAB workspace
as the following variables:

¢ In System Identification Tool GUI or MATLAB Command Window,
represent complex-valued G(e™).

Importing Data into the MATLAB® Workspace

For single-input single-output (SISO) systems, the frequency function is
a column vector.

For a data set with IV, inputs, Ny outputs, and Nf frequencies, the frequency
function 1s an Ny-by-Nu-by-Nf array.

¢ In System Identification Tool GUI only, represent amplitude |G| and phase
shift p=argG.

For single-input single-output (SISO) systems, the amplitude and the
phase must each be a column vector.

For a data set with N, inputs, N, outputs, and N, frequencies, the amplitude
and the phase must each be an N -by-N -by-N; array.

¢ Frequency values must be a column vector.

For more information about importing data into the MATLAB workspace, see
MATLAB Data Import and Export.

After you import data into the MATLAB workspace, you can import it into
the System Identification Tool GUI or create a data object for working at the
command line. For more information about importing data into the GUI, see
“Importing Frequency-Response Data into the GUI” on page 2-22. To learn
more about creating a data object, see “Representing Frequency-Response
Data Using idfrd Objects” on page 2-69.

2-13

2 Data Import and Processing

Importing Data into the GUI

In this section...

“Types of Data You Can Import into the GUI” on page 2-14
“Importing Time-Domain Data into the GUI” on page 2-16
“Importing Frequency-Domain Data into the GUI” on page 2-19
“Importing Frequency-Response Data into the GUI” on page 2-22
“Importing Data Objects into the GUI” on page 2-26

“Specifying the Data Sampling Interval” on page 2-30

“Specifying Estimation and Validation Data” on page 2-31
“Preprocessing Data Using Quick Start” on page 2-32

“Creating Data Sets from a Subset of Signal Channels” on page 2-33
“Creating Multiexperiment Data Sets in the GUI” on page 2-35
“Viewing Data Properties” on page 2-42

“Renaming Data and Changing Display Color” on page 2-43
“Distinguishing Data Types in the GUI” on page 2-45

“Organizing Data Icons” on page 2-45

“Deleting Data Sets in the GUI” on page 2-46

“Exporting Data from the GUI to the MATLAB Workspace” on page 2-47

Types of Data You Can Import into the GUI
You can import the following types of data from the MATLAB workspace into

the System Identification Tool GUI:

® “Importing Time-Domain Data into the GUI” on page 2-16

® “Importing Frequency-Domain Data into the GUI” on page 2-19
¢ “‘Importing Frequency-Response Data into the GUI” on page 2-22
* “Importing Data Objects into the GUI” on page 2-26

2-14

Importing Data into the GUI

To open the GUI, type the following command in the MATLAB Command
Window:

ident

In the Import data list, select the type of data to import from the MATLAB
workspace, as shown in the following figure.

-} System Identification Tool - Untitled o] |
File ____Qu]‘.i.nus__wﬂn_c_l_u_w Help

Ilmpcurt data j . Ilmpcurt mocels d
Operations *

|=:-- Preprocess j

t

=

‘Wiorking Data

1

| Estimate ——= |

Data Views hadel Wiewws
Ta To
[T Titne plat WMiorkspace || LTI ewer | [T hiodel outpot [~ Transient resq
[T Data spectrs [Moddel resids [~ Freguency resg

[T Freguency function] [T Zeres and poles

Ext Trash Validation Dats iz zpzein

Click acknowledoged. Mo action invaked.

For an example of importing data into the System Identification Tool GUI, see
the Getting Started documentation.

2-15

2 Data Import and Processing

2-16

Importing Time-Domain Data into the GUI

Before you can import time-domain data into the System Identification Tool
GUI, you must import the data into the MATLAB workspace, as described in
“Importing Time-Domain Data into MATLAB” on page 2-7.

Note Your time-domain data must be sampled at equal time intervals. The
input and output signals must have the same number of data samples.

To import data into the GUI:

1 Type the following command in the MATLAB Command Window to open
the GUIL:

ident

2 In the System Identification Tool window, select Import data > Time
domain data. This action opens the Import Data dialog box.

Impart data H
Impart data
Titme domain data. ..
Fred. dotmain data...
[rata ohject. ..
Example...

Importing Data into the GUI

3 Specify the following options:

Note For time series, only import the output signal and enter [] for the
input.

¢ Input — Enter the MATLAB variable name (column vector or matrix)
or a MATLAB expression that represents the input data. The expression
must evaluate to a column vector or matrix.

¢ Output — Enter the MATLAB variable name (column vector or
matrix) or a MATLAB expression that represents the output data. The
expression must evaluate to a column vector or matrix.

¢ Data name — Enter the name of the data set, which appears in
the System Identification Tool window after the import operation is
completed.

® Starting time — Enter the starting value of the time axis for time plots.

® Sampling interval — Enter the actual sampling interval in the
experiment. For more information about this setting, see “Specifying the
Data Sampling Interval” on page 2-30.

Tip The System Identification Toolbox product uses the sampling
interval during model estimation and to set the horizontal axis on time
plots. If you transform a time-domain signal to a frequency-domain
signal, the Fourier transforms are computed as discrete Fourier
transforms (DFTs) using this sampling interval.

2-17

2 Data Import and Processing

4 (Optional) In the Data Information area, click More to expand the dialog

2-18

box and enter the following settings:

Input Properties

¢ InterSample — This options specifies the behavior of the input signals

between samples during data acquisition. It is used when transforming
models from discrete-time to continuous-time and when resampling the
data.

= zoh (zero-order hold) indicates that the input was piecewise-constant
during data acquisition.

= foh (first-order hold) indicates that the output was piecewise-linear
during data acquisition.

= bl (bandwidth-limited behavior) specifies that the continuous-time
input signal has zero power above the Nyquist frequency (equal to the
inverse of the sampling interval).

Note See the d2c and c2d reference pages for more information about
transforming between discrete-time and continuous-time models.

Period — Enter Inf to specify a nonperiodic input. If the underlying
time-domain data was periodic over an integer number of periods, enter
the period of the input signal.

Note If your data is periodic, always include a whole number of periods
for model estimation.

Channel Names

¢ Input — Enter a string to specify the name of one or more input

channels.

Importing Data into the GUI

Tip Naming channels helps you to identify data in plots. For
multivariable input-output signals, you can specify the names of
individual Input and Output channels, separated by commas.

® Qutput — Enter a string to specify the name of one or more output
channels.

Physical Units of Variables

¢ Input — Enter a string to specify the input units.

Tip When you have multiple inputs and outputs, enter a
comma-separated list of Input and Output units corresponding to each
channel.

¢ Output — Enter a string to specify the output units.

Notes — Enter comments about the experiment or the data. For
example, you might enter the experiment name, date, and a description
of experimental conditions. Models you estimate from this data inherit

your data notes.

5 Click Import. This action adds a new data icon to the System Identification
Tool window.

6 Click Close to close the Import Data dialog box.
Importing Frequency-Domain Data into the GUI

Frequency-domain data consists of Fourier transforms of time-domain data (a
function of frequency).

Before you can import frequency-domain data into the System Identification
Tool GUI, you must import the data into the MATLAB workspace, as
described in “Importing Frequency-Domain Data into MATLAB” on page 2-9.

2-19

2 Data Import and Processing

2-20

Note The input and output signals must have the same number of data
samples.

To import data into the GUI:

1 Type the following command in the MATLAB Command Window to open
the GUI:

ident

2 In the System Identification Tool window, select Import data > Freq.
domain data. This action opens the Import Data dialog box.

3 Specify the following options:

Input — Enter the MATLAB variable name (column vector or matrix)
or a MATLAB expression that represents the input data. The expression
must evaluate to a column vector or matrix.

Output — Enter the MATLAB variable name (column vector or
matrix) or a MATLAB expression that represents the output data. The
expression must evaluate to a column vector or matrix.

Frequency — Enter the MATLAB variable name of a vector or a
MATLAB expression that represents the frequencies. The expression
must evaluate to a column vector.

The frequency vector must have the same number of rows as the input
and output signals.

Data name — Enter the name of the data set, which appears in
the System Identification Tool window after the import operation is
completed.

Frequency unit — Enter Hz for Hertz or keep the rad/s default value.

Sampling interval — Enter the actual sampling interval in the
experiment. For continuous-time data, enter 0. For more information
about this setting, see “Specifying the Data Sampling Interval” on page
2-30.

Importing Data into the GUI

4 (Optional) In the Data Information area, click More to expand the dialog
box and enter the following optional settings:

Input Properties

¢ InterSample — This options specifies the behavior of the input signals
between samples during data acquisition. It is used when transforming
models from discrete-time to continuous-time and when resampling the
data.

= zoh (zero-order hold) indicates that the input was piecewise-constant
during data acquisition.

= foh (first-order hold) indicates that the output was piecewise-linear
during data acquisition.

= bl (bandwidth-limited behavior) specifies that the continuous-time
input signal has zero power above the Nyquist frequency (equal to the
inverse of the sampling interval).

Note See the d2c and c2d reference page for more information about
transforming between discrete-time and continuous-time models.

¢ Period — Enter Inf to specify a nonperiodic input. If the underlying
time-domain data was periodic over an integer number of periods, enter
the period of the input signal.

Note If your data is periodic, always include a whole number of periods
for model estimation.

Channel Names

¢ Input — Enter a string to specify the name of one or more input
channels.

2-21

2 Data Import and Processing

Tip Naming channels helps you to identify data in plots. For
multivariable input and output signals, you can specify the names of
individual Input and Output channels, separated by commas.

® Qutput — Enter a string to specify the name of one or more output
channels.

Physical Units of Variables

¢ Input — Enter a string to specify the input units.

Tip When you have multiple inputs and outputs, enter a
comma-separated list of Input and Output units corresponding to each
channel.

¢ Output — Enter a string to specify the output units.

Notes — Enter comments about the experiment or the data. For
example, you might enter the experiment name, date, and a description
of experimental conditions. Models you estimate from this data inherit
your data notes.

5 Click Import. This action adds a new data icon to the System Identification
Tool window.

6 Click Close to close the Import Data dialog box.

Importing Frequency-Response Data into the GUI

® “Prerequisite” on page 2-23
¢ “‘Importing Complex-Valued Frequency-Response Data” on page 2-23
¢ “‘Importing Amplitude and Phase Frequency-Response Data” on page 2-24

2-22

Importing Data into the GUI

Prerequisite

Before you can import frequency-response data into the System Identification
Tool GUI, you must import the data into the MATLAB workspace, as described
in “Importing Frequency-Response Data into MATLAB” on page 2-11.

Importing Complex-Valued Frequency-Response Data

To import frequency-response data consisting of complex-valued frequency
values at specified frequencies:

1 Type the following command in the MATLAB Command Window to open
the GUI:

ident

2 In the System Identification Tool window, select Import data > Freq.
domain data. This action opens the Import Data dialog box.

3 In the Data Format for Signals list, select Freq. Function (Complex).

4 Specify the following options:

* Freq. Func. — Enter the MATLAB variable name or a MATLAB
expression that represents the complex frequency-response data G(e®).

* Frequency — Enter the MATLAB variable name of a vector or a
MATLAB expression that represents the frequencies. The expression
must evaluate to a column vector.

* Data name — Enter the name of the data set, which appears in
the System Identification Tool window after the import operation is
completed.

¢ Frequency unit — Enter Hz for Hertz or keep the rad/s default value.

¢ Sampling interval — Enter the actual sampling interval in the
experiment. For continuous-time data, enter 0. For more information
about this setting, see “Specifying the Data Sampling Interval” on page
2-30.

5 (Optional) In the Data Information area, click More to expand the dialog
box and enter the following optional settings:

Channel Names

2-23

2 Data Import and Processing

¢ Input — Enter a string to specify the name of one or more input
channels.

Tip Naming channels helps you to identify data in plots. For
multivariable input and output signals, you can specify the names of
individual Input and Output channels, separated by commas.

® Qutput — Enter a string to specify the name of one or more output
channels.

Physical Units of Variables

¢ Input — Enter a string to specify the input units.

Tip When you have multiple inputs and outputs, enter a
comma-separated list of Input and Output units corresponding to each
channel.

¢ Output — Enter a string to specify the output units.

Notes — Enter comments about the experiment or the data. For
example, you might enter the experiment name, date, and a description
of experimental conditions. Models you estimate from this data inherit
your data notes.

6 Click Import. This action adds a new data icon to the System Identification
Tool window.

7 Click Close to close the Import Data dialog box.
Importing Amplitude and Phase Frequency-Response Data

To import frequency-response data consisting of amplitude and phase values
at specified frequencies:

1 Type the following command in theMATLAB Command Window to open
the GUI:

2-24

Importing Data into the GUI

ident

2 In the System Identification Tool window, select Import data > Freq.
domain data. This action opens the Import Data dialog box.

3 In the Data Format for Signals list, select Freq. Function
(Amp/Phase).

4 Specify the following options:
¢ Amplitude — Enter the MATLAB variable name or a MATLAB
expression that represents the amplitude |G|.
¢ Phase (deg) — Enter the MATLAB variable name or a MATLAB
expression that represents the phase ¢ =argG.

* Frequency — Enter the MATLAB variable name of a vector or a
MATLAB expression that represents the frequencies. The expression
must evaluate to a column vector.

¢ Data name — Enter the name of the data set, which appears in
the System Identification Tool window after the import operation is
completed.

* Frequency unit — Enter Hz for Hertz or keep the rad/s default value.

¢ Sampling interval — Enter the actual sampling interval in the
experiment. For continuous-time data, enter 0. For more information
about this setting, see “Specifying the Data Sampling Interval” on page
2-30.

5 (Optional) In the Data Information area, click More to expand the dialog
box and enter the following optional settings:

Channel Names

¢ Input — Enter a string to specify the name of one or more input
channels.

2-25

2 Data Import and Processing

Tip Naming channels helps you to identify data in plots. For
multivariable input and output signals, you can specify the names of
individual Input and Output channels, separated by commas.

® Qutput — Enter a string to specify the name of one or more output
channels.

Physical Units of Variables

¢ Input — Enter a string to specify the input units.

Tip When you have multiple inputs and outputs, enter a
comma-separated list of Input and Output units corresponding to each
channel.

¢ Output — Enter a string to specify the output units.

Notes — Enter comments about the experiment or the data. For
example, you might enter the experiment name, date, and a description
of experimental conditions. Models you estimate from this data inherit
your data notes.

6 Click Import. This action adds a new data icon to the System Identification
Tool window.

7 Click Close to close the Import Data dialog box.

Importing Data Objects into the GUI

You can import the System Identification Toolbox iddata and idfrd data
objects into the System Identification Tool GUI.

Before you can import a data object into the System Identification Tool GUI,
you must create the data object in the MATLAB workspace, as described in
“Representing Time- and Frequency-Domain Data Using iddata Objects” on
page 2-49 or “Representing Frequency-Response Data Using idfrd Objects”
on page 2-69.

2-26

Importing Data into the GUI

Note You can also import a Control System Toolbox™ frd object. Importing
an frd object converts it to an idfrd object.

Select Import data > Data object to open the Import Data dialog box.
Import iddata, idfrd, or frd data object in the MATLAB workspace.
To import a data object into the GUI:

1 Type the following command in the MATLAB Command Window to open
the GUI:

ident

2 In the System Identification Tool window, select Import data > Data
object.

Impart data ;i

Import data
Time domain data...
Freq. domain data. ..

Example...

This action opens the Import Data dialog box. IDDATA or IDFRD/FRD is
already selected in the Data Format for Signals list.

2-27

2 Data Import and Processing

3 Specify the following options:

® Object — Enter the name of the MATLAB variable that represents the

data object in the MATLAB workspace. Press Enter.

Data name — Enter the name of the data set, which appears in
the System Identification Tool window after the import operation is
completed.

(Only for time-domain iddata object) Starting time — Enter the
starting value of the time axis for time plots.

(Only for frequency domain iddata or idfrd object) Frequency unit
— Enter the frequency unit for response plots.

Sampling interval — Enter the actual sampling interval in the
experiment. For more information about this setting, see “Specifying the
Data Sampling Interval” on page 2-30.

Tip The System Identification Toolbox product uses the sampling
interval during model estimation and to set the horizontal axis on time
plots. If you transform a time-domain signal to a frequency-domain
signal, the Fourier transforms are computed as discrete Fourier
transforms (DFTs) using this sampling interval.

4 (Optional) In the Data Information area, click More to expand the dialog

2-28

box and enter the following optional settings:

(Only for iddata object) Input Properties

Importing Data into the GUI

® InterSample — This options specifies the behavior of the input signals
between samples during data acquisition. It is used when transforming
models from discrete-time to continuous-time and when resampling the
data.

- zoh (zero-order hold) indicates that the input was piecewise-constant
during data acquisition.

= foh (first-order hold) indicates that the input was piecewise-linear
during data acquisition.

= bl (bandwidth-limited behavior) specifies that the continuous-time
input signal has zero power above the Nyquist frequency (equal to the
inverse of the sampling interval).

Note See the d2c and c2d reference page for more information about
transforming between discrete-time and continuous-time models.

® Period — Enter Inf to specify a nonperiodic input. If the underlying
time-domain data was periodic over an integer number of periods, enter
the period of the input signal.

Note If your data is periodic, always include a whole number of periods
for model estimation.

Channel Names

¢ Input — Enter a string to specify the name of one or more input
channels.

Tip Naming channels helps you to identify data in plots. For
multivariable input and output signals, you can specify the names of
individual Input and Output channels, separated by commas.

® Qutput — Enter a string to specify the name of one or more output
channels.

2-29

2 Data Import and Processing

2-30

Physical Units of Variables

¢ Input — Enter a string to specify the input units.

Tip When you have multiple inputs and outputs, enter a
comma-separated list of Input and Output units corresponding to each
channel.

® OQutput — Enter a string to specify the output units.

Notes — Enter comments about the experiment or the data. For
example, you might enter the experiment name, date, and a description
of experimental conditions. Models you estimate from this data inherit
your data notes.

5 Click Import. This action adds a new data icon to the System Identification
Tool window.

6 Click Close to close the Import Data dialog box.

Specifying the Data Sampling Interval

When you import data into the GUI, you must specify the data sampling
interval.

The sampling interval is the time between successive data samples in your
experiment and must be the numerical time interval at which your data is
sampled in any units. For example, enter 0.5 if your data was sampled every
0.5 s, and enter 1 if your data was sampled every 1 s.

You can also use the sampling interval as a flag to specify continuous-time
data. When importing continuous-time frequency domain or
frequency-response data, set the Sampling interval to 0.

The sampling interval is used during model estimation. For time-domain
data, the sampling interval is used together with the start time to calculate
the sampling time instants. When you transform time-domain signals to
frequency-domain signals (see the fft reference page), the Fourier transforms
are computed as discrete Fourier transforms (DFTs) for this sampling

Importing Data into the GUI

interval. In addition, the sampling instants are used to set the horizontal
axis on time plots.

Data Information

Data natme: Er-:.fer

Starting time

Sampling interval:

Sampling Interval in the Import Data dialog box

Specifying Estimation and Validation Data

You should use different data sets to estimate and validate your model for
best validation results.

In the System Identification Tool GUI, Working Data refers to estimation
data. Similarly, Validation Data refers to the data set you use to validate a
model. For example, when you plot the model output, the input to the model
is the input signal from the validation data set. This plot compares model
output to the measured output in the validation data set. Selecting Model
resids performs residual analysis using the validation data.

To specify Working Data, drag and drop the corresponding data icon into the
Working Data rectangle, as shown in the following figure.

2-31

2 Data Import and Processing

2-32

<) System Identification Tool - Untitled -8 x|
File ©Options Window Help

Ilmport data - l Ilmport models - l

Jr Operstions Jr
,V\\ |<-- Preprocess - l f\—
data arxgs

t | —
datade [d " nds3

datade

;

‘Wiorking Data
datady
I Estimate --= - l
Data Wiews x 5 Model Yigws
o
I Time plct [Workspa LTI Wiewwver v Model output |¥ Transiert resp [~ Manlinest AR
I Data spectra [~ Model resids |v Frequency resp [Hamm-iener
I Frequency function N I~ Zeros and poles
i datach .
Exit I™ Moise spectrum
i waliclation Data

Click acknowledged. Mo action invoked.

Similarly, to specify Validation Data, drag and drop the corresponding data
icon into the Validation Data rectangle.

Preprocessing Data Using Quick Start

As a preprocessing shortcut for time-domain data, select Preprocess > Quick
start to simultaneously perform the following four actions:

e Subtract the mean value from each channel.

Note For information about when to subtract mean values from the data,
see “Handling Offsets and Trends in Data” on page 2-97.

e Split data into two parts.
® Specify the first part as estimation data for models (or Working Data).
® Specify the second part as Validation Data.

Importing Data into the GUI

Creating Data Sets from a Subset of Signal Channels

You can create a new data set in the System Identification Tool GUI by
extracting subsets of input and output channels from an existing data set.

To create a new data set from selected channels:

1 In the System Identification Tool GUI, drag the icon of the data from which
you want to select channels to the Working Data rectangle.

2 Select Preprocess > Select channels to open the Select Channels dialog
box.

<) Select Channels =] 3

Warking data; tdatamc

Fs
Ints: |area |

F
Outputs: voltage ~|

Data name: Fdatamu:r

Inzert | Revert

Close | Help

The Inputs list displays the input channels and the Outputs list displays
the output channels in the selected data set.

2-33

2 Data Import and Processing

3 In the Inputs list, select one or more channels in any of following ways:
® Select one channel by clicking its name.

e Select adjacent channels by pressing the Shift key while clicking the
first and last channel names.

® Select nonadjacent channels by pressing the Ctrl key while clicking
each channel name.

Tip To exclude input channels and create time-series data, clear all
selections by holding down the Ctrl key and clicking each selection. To
reset selections, click Revert.

4 In the Outputs list, select one or more channels in any of following ways:
® Select one channel by clicking its name.

e Select adjacent channels by pressing the Shift key while clicking the
first and last channel names.

® Select nonadjacent channels by pressing the Ctrl key while clicking
each channel name.

Tip To reset selections, click Revert.

5 In the Data name field, type the name of the new data set. Use a name
that is unique in the Data Board.

6 Click Insert to add the new data set to the Data Board in the System
Identification Tool GUI.

7 Click Close.

2-34

Importing Data into the GUI

Creating Multiexperiment Data Sets in the GUI

* “Why Create Multiexperiment Data?” on page 2-35
¢ “Limitations on Data Sets” on page 2-35
e “Merging Data Sets” on page 2-35

e “Extracting Specific Experiments from a Multiexperiment Data Set into a
New Data Set” on page 2-39

Why Create Multiexperiment Data?

You can create a time-domain or frequency-domain data set in the System
Identification Tool GUI that includes several experiments. Identifying models
for multiexperiment data results in an average model.

Experiments can mean data that was collected during different sessions, or
portions of the data collected during a single session. In the latter situation,
you can create multiexperiment data by splitting a single data set into
multiple segments that exclude corrupt data, and then merge the good data
segments.

Limitations on Data Sets
You can only merge data sets that have all of the following characteristics:

e Same number of input and output channels.

¢ Different names. The name of each data set becomes the experiment name
in the merged data set.

® Same input and output channel names.

¢ Same data domain (that is, time-domain data or frequency-domain data
only).

Merging Data Sets

You can merge data sets using the System Identification Tool GUI.

2-35

2 Data Import and Processing

For example, suppose that you want to combine the data sets tdata, tdata2,
tdata3, tdata4 shown in the following figure.

<) System Identification Tool - Untitled Hi=] E3
File Options ‘window Help

Ilmpcurt data ;I Ilmpcurt models d
* Operations l
|=:-- Preprocess _ﬂ

f
telata2 Tl

tolata

;

AV, N = | et
| tdatad Waorking Data
tolatad I Estimate --= j
Data Wiewes hocel Wiewws
Tao Ta
[Time plot Workspace || LTI Mewer [[T Moclel output [~ Transient resq
[~ Data spectra [~ Modde resids [~ Freguency resg
[~ Freguency function] \f\«x [T Zeras atd poles
toata

Exit Moise spectrurm
| Trash yalickation Dita 2 i

Click acknowledoged. Mo action invaked.

GUI Contains Four Data Sets to Merge

2-36

Importing Data into the GUI

To merge data sets in the GUI:

1 In the Operations area, select <--Preprocess > Merge experiments
from the drop-down menu to open the Merge Experiments dialog box.

<) System Identification Tool - Untitled Hi=] E3

File Options ‘window Help

Ilmpcurt data ;I . Ilmpcurt models d
Operations l

5,

tolata

=-- Preprocess
Zelect channels...

;

telataz Select experiments...
Y A
| tdatad Select range

’W Remove means

Remove trends

tolatad ;
Filter ...
Data Wiews Resample... hociel iewns

[Time plot Transform data... I Model cutpot [~ Transient resq
Guick start

[~ Data spectra | hodel resids [~ Freguency resg

[~ Freguency function] \f\«x [T Zeras atd poles

Exit tdata i o1
] Dise spectrumn
Trash validation Data r B

Click acknowledoged. Mo action invaked.

2-37

2 Data Import and Processing

2 In the System Identification Tool window, drag a data set icon to the Merge
Experiments dialog box (to the drop them here to be merged rectangle).

The name of the data set is added to the List of sets.

) Merge Experiment =10 x|

Drag data sets
from data boards

List of zet=
and...

data
drop them here dataz =

to be merged

hd
Data name: Fdatam

Insert | Rewvert |

Close | Helg |

tdata and tdata2 to Be Merged

Tip To empty the list, click Revert.

3 Repeat step 2 for each data set you want to merge. Go to the next step
after adding data sets.

4 In the Data name field, type the name of the new data set. This name
must be unique in the Data Board.

2-38

Importing Data into the GUI

5 Click Insert to add the new data set to the Data Board in the System
Identification Tool window.

IImpu:urt data _v_I

4
AL

tdats tdatam

AWV

toataz

tdatad

tolatad

Data Board Now Contains tdatam with Merged Experiments

6 Click Close to close the Merge Experiments dialog box.

Tip To get information about a data set in the System Identification Tool
GUI, right-click the data icon to open the Data/model Info dialog box.

Extracting Specific Experiments from a Multiexperiment Data
Set into a New Data Set

When a data set already consists of several experiments, you can extract
one or more of these experiments into a new data set, using the System
Identification Tool GUI.

For example, suppose that tdatam consists of four experiments.

To create a new data set that includes only the first and third experiments
in this data set:

2-39

2 Data Import and Processing

1 In the System Identification Tool window, drag and drop the tdatam data
icon to the Working Data rectangle.

Ilmpu:ur‘t data j
‘l Operations

:
;

|~:-- Preprocess _vJ

t
tlsta o A

tdata tdatam

;

[W toatam
tdataSﬁ Wiarking Data
tdatad I E=tirmate --= j

tdatam Is Set to Working Data

2 In the Operations area, select Preprocess > Select experiments from
the drop-down menu to open the Select Experiment dialog box.

<} Select Experiment _ O]

Warking data:

Experiments:

Data natme:

Insert Revert

Cloze Help

2-40

Importing Data into the GUI

3 In the Experiments list, select one or more data sets in either of the
following ways:

® Select one data set by clicking its name.

e Select adjacent data sets by pressing the Shift key while clicking the
first and last names.

e Select nonadjacent data sets by pressing the Ctrl key while clicking
each name.

4 In the Data name field, type the name of the new data set. This name
must be unique in the Data Board.

5 Click Insert to add the new data set to the Data Board in the System
Identification Tool GUI.

6 Click Close to close the Select Experiment dialog box.

2-41

2 Data Import and Processing

Viewing Data Properties

You can get information about each data set in the System Identification Tool
GUI by right-clicking the corresponding data icon.

The Data/model Info dialog box opens. This dialog box describes the contents
and the properties of the corresponding data set. It also displays any
associated notes and the command-line equivalent of the operations you used
to create this data.

Tip To view or modify properties for several data sets, keep this window
open and right-click each data set in the System Identification Tool GUI. The
Data/model Info dialog box updates as you select each data set.

=) Data/model Info: datad -0 x|
Crata name: Idatad
Color: ID 1 D]
Time domain data et with 1000 samples. ;I
Sampling interyval 0.03
Output s Unit (if zpecified)
. temperature o C
gata ‘?btJ.eCt — b Imputs Uit (if specified)
escription potver Wy
=
Diary And Mates
2l
History of L;ald dr\‘;frzd "
syntax that - | 2 M0 A
created this datad = detrend(ata D) |
object _|
-
Present | Cloze Helg I

2-42

Importing Data into the GUI

To displays the data properties in the MATLAB Command Window, click
Present.

Renaming Data and Changing Display Color

You can rename data and change its display color by double-clicking the data
icon in the System Identification Tool GUI.

The Data/model Info dialog box opens. This dialog box describes both the
contents and the properties of the data. The object description area displays
the syntax of the operations you used to create the data in the GUI.

The Data/model Info dialog box also lets you rename the data by entering a
new name in the Data name field.

You can also specify a new display color using three RGB values in the Color
field. Each value is between 0 to 1 and indicates the relative presence of
red, green, and blue, respectively. For more information about specifying
default data color, see “Customizing the System Identification Tool GUI” on
page 11-20.

Tip As an alternative to using three RGB values, you can enter any one of
the following letters in single quotes:

yl |r.‘| |b| |C| |g| |m| |k|

These strings represent yellow, red, blue, cyan, green, magenta, and black,
respectively.

2-43

2 Data Import and Processing

) Data/model Info: datad - O] x|
Crata name: l:iatad
Colar: ID 1 |:|]
Titme domain data zet with 1000 zamples. ;I
Sampling intetval: 0.05
Otputs nit (i specified)
. temperature o c
([j)ata ‘.’btJ.eCt — s Uit (if specified)
escription hower W
hd
Diary And Motes:
)
History of LEd dr\’:rzd ot
syntax that | 72 IMP0 A
created this datad = detrend(data,0) |
object _|
-
Present | Close Helg |

Information About the Data

You can enter comments about the origin and state of the data in the Diary
And Notes area. For example, you might want to include the experiment
name, date, and the description of experimental conditions. When you
estimate models from this data, these notes are associated with the models.

Clicking Present display portions of this information in the MATLAB
Command Window.

2-44

Importing Data into the GUI

Distinguishing Data Types in the GUI

The background color of a data icon is color-coded, as follows:

e White background represents time-domain data.
¢ Blue background represents frequency-domain data.

¢ Yellow background represents frequency-response data.

IImpu:urt data j

Time-domain data ———» r\,\
clata

Frequency-domain ——

data datafd
Frequency-response —m _\
data datatff

Data Yiews

Colors Representing Type of Data

Organizing Data Icons

You can rearrange data icons in the System Identification Tool GUI by
dragging and dropping the icons to empty Data Board rectangles in the GUI.

Note You cannot drag and drop a data icon into the model area on the right.

When you need additional space for organizing data or model icons, select
Options > Extra model/data board in the System Identification Tool GUI.
This action opens an extra session window with blank rectangles for data and
models. The new window is an extension of the current session and does

not represent a new session.

2-45

2 Data Import and Processing

=)} System Identification Tool - Untitled (2} o]

Ll

Tip When you import or create data sets and there is insufficient space for
the icons, an additional session window opens automatically.

You can drag and drop data between the main System Identification Tool
GUI and any extra session windows.

Type comments in the Notes field to describe the data sets. When you save a
session, as described in “Saving, Merging, and Closing Sessions” on page 11-6,
all additional windows and notes are also saved.

Deleting Data Sets in the GUI

To delete data sets in the System Identification Tool GUI, drag and drop the
corresponding icon into Trash. Moving items to Trash does not permanently
delete these items.

Note You cannot delete a data set that is currently designated as Working
Data or Validation Data. You must first specify a different data set in the
System Identification Tool GUI to be Working Data or Validation Data, as
described in “Specifying Estimation and Validation Data” on page 2-31.

2-46

Importing Data into the GUI

To restore a data set from Trash, drag its icon from Trash to the Data or
Model Board in the System Identification Tool window. You can view the
Trash contents by double-clicking the Trash icon.

Note You must restore data to the Data Board; you cannot drag data icons to
the Model Board.

JRT=TE
Izons can be dragged back toident.
Press Empty to permanently delete.
Dryer
Ernpaty | Close I Help I

To permanently delete all items in Trash, select Options > Empty trash.

Exiting a session empties the Trash automatically.

Exporting Data from the GUI to the MATLAB
Workspace

The data you create in the System Identification Tool GUI is not available
in the MATLAB workspace until you export the data set. Exporting to the
MATLAB workspace is necessary when you need to perform an operation on
the data that is only available at the command line.

To export a data set to the MATLAB workspace, drag and drop the
corresponding icon to the To Workspace rectangle.

2-47

2 Data Import and Processing

When you export data to the MATLAB workspace, the resulting variables
have the same name as in the System Identification Tool GUI. For example,
the following figure shows how to export the time-domain data object datad.

Ilmport data - I

* Operations
’V\\ Iq-— Preprocess - I

data
= 1]
datad \\"/\\»

data
Working Data

+
I Estimate --= - l

Data Views L} =
o

Ta
[~ Time plot Workspace |[LTI Wiewer

[Data spectra
[~ Frequency function l l

Trash

Exit |

Exporting Data to the MATLAB® Workspace

In this example, the MATLAB workspace contains a variable named data
after export.

2-48

Representing Time- and Frequency-Domain Data Using iddata Objects

Representing Time- and Frequency-Domain Data Using
iddata Objects

In this section...

“iddata Constructor” on page 2-49

“iddata Properties” on page 2-52

“Creating Multiexperiment Data at the Command Line” on page 2-55
“Subreferencing iddata Objects” on page 2-57

“Modifying Time and Frequency Vectors” on page 2-61

“Naming, Adding, and Removing Data Channels” on page 2-64

“Concatenating iddata Objects” on page 2-66

iddata Constructor

e “Requirements for Constructing an iddata Object” on page 2-49
® “Constructing an iddata Object for Time-Domain Data” on page 2-50

¢ “Constructing an iddata Object for Frequency-Domain Data” on page 2-51

Requirements for Constructing an iddata Object

To construct an iddata object, you must have already imported data into the
MATLAB workspace, as described in “Importing Data into the MATLAB
Workspace” on page 2-7.

2-49

2 Data Import and Processing

2-50

Constructing an iddata Object for Time-Domain Data
Use the following syntax to create a time-domain iddata object data:

data = iddata(y,u,Ts)

You can also specify additional properties, as follows:

data = iddata(y,u,Ts, 'Propertyl',Valuel,..., 'PropertyN',ValueN)

For more information about accessing object properties, see “iddata
Properties” on page 2-52.

In this example, Ts is the sampling time, or the time interval, between
successive data samples. For uniformly sampled data, Ts is a scalar value
equal to the sampling interval of your experiment. The default time unit is
seconds, but you can specify any unit string using the TimeUnit property.
For more information about iddata time properties, see “Modifying Time
and Frequency Vectors” on page 2-61.

For nonuniformly sampled data, specify Ts as [], and set the value of the
SamplingInstants property as a column vector containing individual time

values. For example:

data = iddata(y,u,Ts,[], 'SamplingInstants',TimeVector)

Where TimeVector represents a vector of time values.

Note You can modify the property SamplingInstants by setting it to a new
vector with the length equal to the number of data samples.

To represent time-series data, use the following syntax:

ts_data = iddata(y,[],Ts)

where y i1s the output data, [] indicates empty input data, and Ts is the
sampling interval.

Representing Time- and Frequency-Domain Data Using iddata Objects

The following example shows how to create an iddata object using
single-input/single-output (SISO) data from dryer2.mat. The input and
output each contain 1000 samples with the sampling interval of 0.08 second.

load dryer2 % Load input u2 and output y2.
data = iddata(y2,u2,0.08) % Create iddata object.

MATLAB returns the following output:

Time domain data set with 1000 samples.
Sampling interval: 0.08

Outputs Unit (if specified)
yi

Inputs Unit (if specified)
ut

The default channel name 'y1' is assigned to the first and only output
channel. When y2 contains several channels, the channels are assigned
default names 'y1','y2','y2',...,"'yn'. Similarly, the default channel
name 'ul' is assigned to the first and only input channel. For more
information about naming channels, see “Naming, Adding, and Removing
Data Channels” on page 2-64.

Constructing an iddata Object for Frequency-Domain Data

Frequency-domain data is the Fourier transform of the input and output
signals at specific frequency values. To represent frequency-domain data, use
the following syntax to create the iddata object:

data = iddata(y,u,Ts, 'Frequency',w)

'Frequency' is an iddata property that specifies the frequency values w,
where w is the frequency column vector that defines the frequencies at which
the Fourier transform values of y and u are computed. Ts is the time interval
between successive data samples in seconds for the original time-domain
data. w, y, and u have the same number of rows.

2-51

2 Data Import and Processing

2-52

Note You must specify the frequency vector for frequency-domain data.

For more information about iddata time and frequency properties, see
“Modifying Time and Frequency Vectors” on page 2-61.

To specify a continuous-time system, set Ts to 0.

You can specify additional properties when you create the iddata object, as
follows:

data = iddata(y,u,Ts, 'Propertyl',Valuel,..., 'PropertyN',ValueN)

For more information about accessing object properties, see “iddata
Properties” on page 2-52.

iddata Properties

To view the properties of the iddata object, use the get command. For
example, type the following commands at the prompt:

load dryer2 % Load input u2 and output y2
data = iddata(y2,u2,0.08); % Create iddata object
get(data) % Get property values of data

Representing Time- and Frequency-Domain Data Using iddata Objects

MATLAB returns the following object properties and values:

Domain: 'Time'
Name: []
OutputData: [1000x1 double]
y: 'Same as OutputData'
OutputName: {'y1'}
OutputUnit: {''}
InputData: [1000x1 double]
u: 'Same as InputData'
InputName: {'utl'}
InputUnit: {''}
Period: Inf
InterSample: 'zoh'
Ts: 0.0800
Tstart: []
SamplingInstants: [1000x0 double]
TimeUnit: "'
ExperimentName: 'Exp1’
Notes: []
UserData: []

For a complete description of all properties, see the iddata reference page or
type idprops iddata at the prompt.

You can specify properties when you create an iddata object using the
constructor syntax:
data = iddata(y,u,Ts, 'Propertyl',Valuel,..., 'PropertyN',ValueN)

To change property values for an existing iddata object, use the set command
or dot notation. For example, to change the sampling interval to 0.05, type
the following at the prompt:

set(data, 'Ts',0.05)
or equivalently:
data.ts = 0.05

Property names are not case sensitive. You do not need to type the entire
property name if the first few letters uniquely identify the property.

2-53

2 Data Import and Processing

2-54

Tip You can use data.y as an alternative to data.OutputData to access the
output values, or use data.u as an alternative to data.InputData to access
the input values.

An iddata object containing frequency-domain data includes
frequency-specific properties, such as Frequency for the frequency vector and
Units for frequency units (instead of Tstart and SamplingIntervals).

To view the property list, type the following command sequence at the prompt:

[
“©

o°

o°

o°

o°

Load input u2 and output y2

load dryer2;

Create iddata object

data = iddata(y2,u2,0.08);

Take the Fourier transform of the data
transforming it to frequency domain
data = fft(data)

Get property values of data

get(data)

Representing Time- and Frequency-Domain Data Using iddata Objects

MATLAB returns the following object properties and values:

Domain: 'Frequency’
Name: []
OutputData: [501x1 double]
y: 'Same as OutputData'
OutputName: {'y1'}
OutputUnit: {''}
InputData: [501x1 double]
u: 'Same as InputData’
InputName: {'ut1'}
InputUnit: {''}
Period: Inf
InterSample: 'zoh'
Ts: 0.0800
Units: 'rad/s'
Frequency: [501x1 double]
TimeUnit: "'
ExperimentName: 'Exp1’
Notes: T[]
UserData: []

Creating Multiexperiment Data at the Command Line

¢ “Why Create Multiexperiment Data Sets?” on page 2-55

¢ “Limitations on Data Sets” on page 2-56

¢ “Entering Multiexperiment Data Directly” on page 2-56

e “Merging Data Sets” on page 2-56
¢ “Adding Experiments to an Existing iddata Object” on page 2-57

Why Create Multiexperiment Data Sets?

You can create iddata objects that contain several experiments. Identifying
models for an iddata object with multiple experiments results in an average
model.

In the System Identification Toolbox product, experiments can either
mean data collected during different sessions, or portions of the data

2-55

2 Data Import and Processing

2-56

collected during a single session. In the latter situation, you can create a
multiexperiment iddata object by splitting the data from a single session into
multiple segments to exclude bad data, and merge the good data portions.

Note The idfrd object does not support the iddata equivalent of
multiexperiment data.

Limitations on Data Sets
You can only merge data sets that have all of the following characteristics:

¢ Same number of input and output channels.
¢ Same input and output channel names.

¢ Same data domain (that is, time-domain data or frequency-domain data).

Entering Multiexperiment Data Directly

To construct an iddata object that includes N data sets, you can use this
syntax:

data = iddata(y,u,Ts)

where y, u, and Ts are 1-by-N cell arrays containing data from the different
experiments. Similarly, when you specify Tstart, Period, InterSample, and
SamplingInstants properties of the iddata object, you must assign their
values as 1-by-N cell arrays.

Merging Data Sets

Create a multiexperiment iddata object by merging iddata objects, where
each contains data from a single experiment or is a multiexperiment data set.
For example, you can use the following syntax to merge data:

load iddatat
load iddata3
z = merge(z1,z3)

o°

Loads iddata object z1

Loads iddata object z3

Merges experiments z1 and z3 into
the iddata object z

o° o°

o°

Representing Time- and Frequency-Domain Data Using iddata Objects

These commands create an iddata object that conatains two experiments,
where the experiments are assigned default names 'Exp1' and 'Exp2',
respectively.

Adding Experiments to an Existing iddata Object

You can add experiments individually to an iddata object as an alternative
approach to merging data sets.

For example, to add the experiments in the iddata object dat4 to data, use
the following syntax:

data(:,:,:,'Rund4') = dat4

This syntax explicitly assigns the experiment name 'Run4’' to the new
experiment. The Experiment property of the iddata object stores experiment
names.

For more information about subreferencing experiments in a multiexperiment
data set, see “Subreferencing Experiments” on page 2-60.

Subreferencing iddata Objects

® “Subreferencing Input and Output Data” on page 2-57
® “Subreferencing Data Channels” on page 2-59

® “Subreferencing Experiments” on page 2-60

Subreferencing Input and Output Data

Subreferencing data and its properties lets you select data values and assign
new data and property values.

2-57

2 Data Import and Processing

2-58

Use the following general syntax to subreference specific data values in
iddata objects:

data(samples,outputchannels,inputchannels,experimentname)

In this syntax, samples specify one or more sample indexes, outputchannels
and inputchannels specify channel indexes or channel names, and
experimentname specifies experiment indexes or names.

For example, to retrieve samples 5 through 30 in the iddata object data and
store them in a new iddata object data_sub, use the following syntax:

data_sub = data(5:30)

You can also use logical expressions to subreference data. For example, to
retrieve all data values from a single-experiment data set that fall between
sample instants 1.27 and 9.3 in the iddata object data and assign them to
data_sub, use the following syntax:

data_sub = data(data.sa>1.27&data.sa<9.3)

Note You do not need to type the entire property name. In this example, sa
in data.sa uniquely identifies the SamplingInstants property.

You can retrieve the input signal from an iddata object using the following
commands:

u = get(data, 'InputData’')

or

data.InputData

or

data.u % u is the abbreviation for InputData

Representing Time- and Frequency-Domain Data Using iddata Objects

Similarly, you can retrieve the output data using

data.OutputData

or

data.y % y is the abbreviation for OutputData

Subreferencing Data Channels

Use the following general syntax to subreference specific data channels in
iddata objects:

data(samples,outputchannels,inputchannels,experiment)

In this syntax, samples specify one or more sample indexes, outputchannels
and inputchannels specify channel indexes or channel names, and
experimentname specifies experiment indexes or names.

To specify several channel names, you must use a cell array of name strings.

For example, suppose the iddata object data contains three output channels
(named y1, y2, and y3), and four input channels (named u1, u2, u3, and u4).
To select all data samples in y3, u1, and u4, type the following command at
the prompt:

% Use a cell array to reference
% input channels 'u1' and 'u4’'
data_sub = data(:,'y3',{'u1','ud4'})

or equivalently

% Use channel indexes 1 and 4
% to reference the input channels
data_sub = data(:,3,[1 4])

Tip Use a colon (:) to specify all samples or all channels, and the empty
matrix ([]) to specify no samples or no channels.

2-59

2 Data Import and Processing

2-60

If you want to create a time-series object by extracting only the output data
from an iddata object, type the following command:

data_ts = data(:,:,[])

You can assign new values to subreferenced variables. For example, the
following command assigns the first 10 values of output channel 1 of data to
values in samples 101 through 110 in the output channel 2 of datat. It also
assigns the values in samples 101 through 110 in the input channel 3 of data1
to the first 10 values of input channel 1 of data.

data(1:10,1,1) = datai(101:110,2,3)

Subreferencing Experiments

Use the following general syntax to subreference specific experiments in
iddata objects:

data(samples,outputchannels,inputchannels,experimentname)

In this syntax, samples specify one or more sample indexes, outputchannels
and inputchannels specify channel indexes or channel names, and
experimentname specifies experiment indexes or names.

When specifying several experiment names, you must use a cell array of name
strings. The iddata object stores experiments name in the ExperimentName

property.

For example, suppose the iddata object data contains five experiments with
default names, Exp1, Exp2, Exp3, Exp4, and Exp5. Use the following syntax to
subreference the first and fifth experiment in data:

data_sub data(:,:,:,{'Exp1','Exp5'}) % Using experiment name
or

data_sub = data(:,:,:,[1 5]) % Using experiment index

Tip Use a colon (:) to denote all samples and all channels, and the empty
matrix ([]) to specify no samples and no channels.

Representing Time- and Frequency-Domain Data Using iddata Objects

Alternatively, you can use the getexp command. The following example
shows how to subreference the first and fifth experiment in data:

data_sub getexp(data,{'Exp1', 'Exp5'}) % Using experiment name

or

data_sub = getexp(data,[1 5]) % Using experiment index

The following example shows how to retrieve the first 100 samples of output
channels 2 and 3 and input channels 4 to 8 of Experiment 3:

dat(1:100,[2,3],[4:8],3)

Modifying Time and Frequency Vectors

The iddata object stores time-domain data or frequency-domain data and has
several properties that specify the time or frequency values. To modify the
time or frequency values, you must change the corresponding property values.

Note You can modify the property SamplingInstants by setting it to a
new vector with the length equal to the number of data samples. For more
information, see “Constructing an iddata Object for Time-Domain Data” on
page 2-50.

The following tables summarize time-vector and frequency-vector properties,
respectively, and provides usage examples. In each example, data is an
iddata object.

Note Property names are not case sensitive. You do not need to type the
entire property name if the first few letters uniquely identify the property.

2-61

2 Data Import and Processing

2-62

iddata Time-Vector Properties

Property

Description

Syntax Example

Ts

Sampling time interval.

®* For a single
experiment, Ts is a
scalar value.

¢ For multiexperiement
data with Ne
experiments, TS is
a 1-by-Ne cell array,
and each cell contains
the sampling interval
of the corresponding
experiment.

To set the sampling
interval to 0.05:

set(data, 'ts',0.05)

or

data.ts = 0.05

Tstart

Starting time of the
experiment.

* For a single
experiment, Ts is a
scalar value.

¢ For multiexperiement
data with Ne
experiments, Ts is
a 1-by-Ne cell array,
and each cell contains
the sampling interval
of the corresponding
experiment.

To change starting time
of the first data sample to
24:

data.Tstart = 24

Time units are set by the
property TimeUnit.

Representing Time- and Frequency-Domain Data Using iddata Objects

iddata Time-Vector Properties (Continued)

Property Description Syntax Example
SamplingInstants | Time values in the time To retrieve the time
vector, computed from the | vector for iddata object
properties Tstart and Ts. | data, use:
* For a single get(data, 'sa’)
experiment, To plot the input data as
SamplingInstants a function of time:
is an N-by-1 vector.
. . plot(data.sa,data.u)
® For multiexperiement
data with Ne
e};f))egfrzle?stsg Ellgs-Ne Note sa is the first
property Y two letters of the
cell array, and each .
. SamplingInstants
cell contains the .
.. property that uniquely
svolitogg sl identifies this propert
of the corresponding property.
experiment.
TimeUnit Unit of time. To change the unit of the

time vector to msec:

data.ti = 'msec'

iddata Frequency-Vector Properties

Property

Description

Syntax Example

Frequency

Frequency values at
which the Fourier
transforms of the signals
are defined.

® For a single
experiment, Frequency
1s a scalar value.

To specify 100 frequency
values in log space,
ranging between 0.1 and
100, use the following
syntax:

data.freq =

2-63

2 Data Import and Processing

iddata Frequency-Vector Properties (Continued)

Property

Description

Syntax Example

® For multiexperiement
data with Ne
experiments,
Frequency is a
1-by-Ne cell array,
and each cell contains
the frequencies of
the corresponding
experiment.

logspace(-1,2,100)

Units

Frequency unit must
have the following values:

e [f the TimeUnit is
empty or s (seconds),
enter rad/s or Hz

e [fthe TimeUnit is any
string unit (other than
s), enter rad/unit.

For multiexperiement
data with Ne experiments,
Units is a 1-by-Ne cell
array, and each cell
contains the frequency
unit for each experiment.

If you specified the
TimeUnit as msec, your
frequency units must be:

data.unit=
‘rad/msec'

Naming, Adding, and Removing Data Channels

* “What Are Input and Output Channels?” on page 2-65

¢ “Naming Channels” on page 2-65

e “Adding Channels” on page 2-66

2-64

Representing Time- and Frequency-Domain Data Using iddata Objects

¢ “Modifying Channel Data” on page 2-66

What Are Input and Output Channels?

A multivariate system might contain several input variables or several output
variables, or both. When an input or output signal includes several measured
variables, these variables are called channels.

Naming Channels

The iddata properties InputName and OutputName store the channel names
for the input and output signals. When you plot the data, you use channel
names to select the variable displayed on the plot. If you have multivariate
data, it 1s helpful to assign a name to each channel that describes the
measured variable. For more information about selecting channels on a plot,
see “Selecting Measured and Noise Channels in Plots” on page 11-18.

You can use the set command to specify the names of individual channels.
For example, suppose data contains two input channels (voltage and current)
and one output channel (temperature). To set these channel names, use the
following syntax:

set(data, 'InputName',{'Voltage', 'Current'},
"OutputName', 'Temperature')

Tip You can also specify channel names as follows:

data.una
data.yna

{'Voltage', 'Current')
'Temperature'

una is equivalent to the property InputName, and yna is equivalent to
OQutputName.

If you do not specify channel names when you create the iddata object,
the toolbox assigns default names. By default, the output channels
are named 'y1','y2',...,'yn', and the input channels are named
‘ut','u2',...,"'un".

2-65

2 Data Import and Processing

2-66

Adding Channels

You can add data channels to an iddata object.

For example, consider an iddata object named data that contains an input
signal with four channels. To add a fifth input channel, stored as the vector
Input5, use the following syntax:

data.u(:,5) = Inputb;

Input5 must have the same number of rows as the other input channels. In
this example, data.u(:,5) references all samples as (indicated by :) of the
input signal u and sets the values of the fifth channel. This channel is created
when assigning its value to Input5.

You can also combine input channels and output channels of several iddata
objects into one iddata object using concatenation. For more information, see
“Concatenating iddata Objects” on page 2-66.

Modifying Channel Data

After you create an iddata object, you can modify or remove specific input
and output channels, if needed. You can accomplish this by subreferencing
the input and output matrices and assigning new values.

For example, suppose the iddata object data contains three output channels
(named y1, y2, and y3), and four input channels (named u1, u2, u3, and u4).
To replace data such that it only contains samples in y3, ul, and u4, type
the following at the prompt:

data = data(:,3,[1 4])

The resulting data object contains one output channel and two input channels.

Concatenating iddata Objects

* “iddata Properties Storing Input and Output Data” on page 2-67
¢ “Horizontal Concatenation” on page 2-67

e “Vertical Concatenation” on page 2-68

Representing Time- and Frequency-Domain Data Using iddata Objects

iddata Properties Storing Input and Output Data

The InputData iddata property stores column-wise input data, and the
OutputData property stores column-wise output data. For more information
about accessing iddata properties, see “iddata Properties” on page 2-52.

Horizontal Concatenation

Horizontal concatenation of iddata objects creates a new iddata object
that appends all InputData information and all OutputData. This type of
concatenation produces a single object with more input and output channels.
For example, the following syntax performs horizontal concatenation on the
iddata objects datai,data2,...,dataN:

data = [datal,data2,...,dataN]

This syntax is equivalent to the following longer syntax:

data.InputData =

[datal.InputData,data2.InputData,...,dataN.InputData]
data.OutputData =
[datal.OQutputData,data2.0QutputData,...,dataN.OutputData]
For horizontal concatenation, datal,data2,...,dataN must have the same

number of samples and experiments , and the sameTs and Tstart values.

The channels in the concatenated iddata object are named according to the
following rules:

¢ Combining default channel names. If you concatenate iddata objects
with default channel names, such as u1 and y1, channels in the new iddata
object are automatically renamed to avoid name duplication.

¢ Combining duplicate input channels. If datat,data2,...,dataN
have input channels with duplicate user-defined names, such that datak
contains channel names that are already present in datad with J < K, the
dataK channels are ignored.

* Combining duplicate output channels. If datat1,data2,...,dataN
have input channels with duplicate user-defined names, only the output
channels with unique names are added during the concatenation.

2-67

2 Data Import and Processing

Vertical Concatenation

Vertical concatenation of iddata objects creates a new iddata object that
vertically stacks the input and output data values in the corresponding data
channels. The resulting object has the same number of channels, but each
channel contains more data points. For example, the following syntax creates
a data object such that its total number of samples is the sum of the samples
in datai,data2,...,dataN.

data = [datal;data2;... ;dataN]

This syntax is equivalent to the following longer syntax:

data.InputData =

[datal.InputData;data2.InputData;...;dataN.InputData]
data.OutputData =
[datal.OQutputData;data2.0utputData;...;dataN.OQutputData]
For vertical concatenation, datatl,data2,...,dataN must have the same

number of input channels, output channels, and experiments.

2-68

Representing Frequency-Response Data Using idfrd Objects

Representing Frequency-Response Data Using idfrd

Obijects

In this section...

“idfrd Constructor” on page 2-69

“idfrd Properties” on page 2-70
“Subreferencing idfrd Objects” on page 2-72
“Concatenating idfrd Objects” on page 2-73
“See Also” on page 2-76

idfrd Constructor

The idfrd represents complex frequency-response data. Before you can
create an idfrd object, you must import your data as described in “Importing
Frequency-Response Data into MATLAB” on page 2-11.

Note The idfrd object can only encapsulate one frequency-response data
set. It does not support the iddata equivalent of multiexperiment data.

Use the following syntax to create the data object fr_data:
fr_data = idfrd(response,f,Ts)

Suppose that ny is the number of output channels, nu is the number of
input channels, and nf is a vector of frequency values. response is an
ny-by-nu-by-nf 3-D array. f is the frequency vector that contains the
frequencies of the response.Ts is the sampling time, which is used when
measuring or computing the frequency response. If you are working with a
continuous-time system, set Ts to 0.

response (ky, ku,kf), where ky, ku, and kf reference the kth output, input,

and frequency value, respectively, is interpreted as the complex-valued
frequency response from input ku to output ky at frequency f (kf).

2-69

2 Data Import and Processing

Note When you work at the command line, you can only create idfrd objects
from complex values of G(e*®). For a SISO system, response can be a vector.

You can specify object properties when you create the idfrd object using
the constructor syntax:

fr_data = idfrd(response,f,Ts,
'"Propertyi1',Valuel,..., 'PropertyN',ValueN)

idfrd Properties

To view the properties of the idfrd object, you can use the get command.

The following example shows how to create an idfrd object that contains

100 frequency-response values with a sampling time interval of 0.08 s and
get its properties:

% Create the idfrd data object
fr_data = idfrd(response,f,0.08)

% Get property values of data
get(fr_data)

2-70

Representing Frequency-Response Data Using idfrd Objects

response and f are variables in the MATLAB Workspace browser,
representing the frequency-response data and frequency values, respectively.

MATLAB returns the following object properties and values:

ans =
Name: ''

Frequency: [100x1 double]
ResponseData: [1x1x100 double]
SpectrumData: []

CovarianceData: []
NoiseCovariance: []
Units: 'rad/s'
Ts: 0.0800
InputDelay: O
EstimationInfo: [1x1 struct]
InputName: {'ut1'}
OutputName: {'y1'}
InputUnit: {''}
OutputUnit: {''}
Notes: []

UserData: []

For a complete description of all idfrd object properties, see the idfrd
reference page or type idprops idfrd at the prompt.

To change property values for an existing idfrd object, use the set command
or dot notation. For example, to change the name of the idfrd object, type
the following command sequence at the prompt:

% Set the name of the f_data object
set(fr_data, 'name', 'DC_Converter')

% Get fr_data properties and values
get(fr_data)

Property names are not case sensitive. You do not need to type the entire
property name if the first few letters uniquely identify the property.

2-71

2 Data Import and Processing

2-72

If you import fr_data into the System Identification Tool GUI, this data has
the name DC_Converter in the GUI, and not the variable name fr_data.

MATLAB returns the following object properties and values:

ans =
Name: 'DC_Converter'
Frequency: [100x1 double]
ResponseData: [1x1x100 double]
SpectrumData: []
CovarianceData: []
NoiseCovariance: []
Units: 'rad/s'
Ts: 0.0800
InputDelay: O
EstimationInfo: [1x1 struct]
InputName: {'ut1'}
OutputName: {'y1'}
InputUnit: {''}
OutputUnit: {''}
Notes: []
UserData: []

Subreferencing idfrd Objects

You can reference specific data values in the idfrd object using the following
syntax:

fr_data(outputchannels,inputchannels)

Reference specific channels by name or by channel index.

Tip Use a colon (:) to specify all channels, and use the empty matrix ([]) to
specify no channels.

Representing Frequency-Response Data Using idfrd Objects

For example, the following command references frequency-response data from
input channel 3 to output channel 2:

fr_data(2,3)

You can also access the data in specific channels using channel names. To list
multiple channel names, use a cell array. For example, to retrieve the power
output, and the voltage and speed inputs, use the following syntax:

fr_data('power',{'voltage', 'speed'})

To retrieve only the responses corresponding to frequency values between 200
and 300, use the following command.:

fr_data_sub = fselect(fr_data,[200:300])

You can also use logical expressions to subreference data. For example, to
retrieve all frequency-response values between frequencies 1.27 and 9.3 in
the idfrd object fr_data, use the following syntax:

fr_data_sub = fselect(fr_data,fr_data.f>1.27&fr_data.f<9.3)

Tip Use end to reference the last sample number in the data. For example,
data(77:end).

Note You do not need to type the entire property name. In this example, f in
fr_data.f uniquely identifies the Frequency property of the idfrd object.

Concatenating idfrd Objects

® “About Concatenating idfrd Models” on page 2-74

® “Horizontal Concatenation of idfrd Objects” on page 2-74

® “Vertical Concatenation of idfrd Objects” on page 2-75

¢ “Concatenating Noise Spectrum Data of idfrd Objects” on page 2-75

2-73

2 Data Import and Processing

2-74

About Concatenating idfrd Models

The horizontal and vertical concatenation of idfrd objects combine
information in the ResponseData properties of these objects. ResponseData is
an ny-by-nu-by-nf array that stores the response of the system, where ny is
the number of output channels, nu is the number of input channels, and nf is
a vector of frequency values (see “idfrd Properties” on page 2-70).

Horizontal Concatenation of idfrd Objects

The following syntax creates a new idfrd object data that contains the
horizontal concatenation of datal,data2,...,dataN:

data = [datal,data2,...,dataN]

data contains the frequency responses from all of the inputs in
datail,data2,...,dataN to the same outputs. The following diagram is a
graphical representation of horizontal concatenation of frequency-response
data. The (j,1i,:) vector of the resulting response data represents the
frequency response from the ith input to the jth output at all frequencies.

ul— Data 1 — y1 54— Data 2 —y1
u—] 2-by-2-bynf | o Y 2-by-1-by-nf | o
. U1— Horizonal Concatenation |— y1
Combined | "o Data 1 and Data 2 Same
u3—

Note Horizontal concatenation of idfrd objects requires that they have

the same outputs and frequency vectors. If the output channel names are
different and their dimensions are the same, the concatenation operation uses
the names of output channels in the first idfrd object. Input channels must
have unique names.

Representing Frequency-Response Data Using idfrd Objects

Vertical Concatenation of idfrd Objects

The following syntax creates a new idfrd object data that contains the
vertical concatenation of datai,data2,...,dataN:

data = [datal;data2;... ;dataN]

The resulting idfrd object data contains the frequency responses from

the same inputs in datai,data2,...,dataN to all the outputs. The
following diagram is a graphical representation of vertical concatenation of
frequency-response data. The (j,i,:) vector of the resulting response data
represents the frequency response from the ith input to the jth output at all
frequencies.

ul— Data 1 — 1 u1— Data 1 3
u2—, 2-by-2-by-nf [y2 u2—| 1-by-2-by-nf
. . |
ul—] Vertical Concatenation y .
ﬁar&g of Data 1 and Data 2 — Y2 gl?tml?tlg ed
P u2— 3-by-2-by-nf | v3 P

Note Vertical concatenation of idfrd objects requires that they have the
same inputs and frequency vectors. If the input channel names are different
and their dimensions are the same, the concatenation operation uses the
names of input channels in the first idfrd object you listed. Output channels
must have unique names.

Concatenating Noise Spectrum Data of idfrd Objects

When the idfrd objects contain the frequency-response data you measured
or constructed manually, the concatenation operation combines only the
ResponseData properties. Because the noise spectrum data does not exist
(unless you also entered it manually), SpectrumData is empty in both the
individual idfrd objects and the concatenated idfrd object.

2-75

2 Data Import and Processing

2-76

However, when the idfrd objects are spectral models that you estimated, the
SpectrumData property is not empty and contains the power spectra and
cross spectra of the output noise in the system. For each output channel, the
toolbox estimates one noise channel to explain the difference between the
output of the model and the measured output.

When the SpectrumData property of individual idfrd objects is not empty,
horizontal and vertical concatenation handle SpectrumbData, as follows.

In case of horizontal concatenation, there is no meaningful way to combine the
SpectrumData of individual idfrd objects and the resulting SpectrumData
property is empty. An empty property results because each idfrd object has
its own set of noise channels, where the number of noise channels equals the
number of outputs. When the resulting idfrd object contains the same output
channels as each of the individual idfrd objects, it cannot accommodate the
noise data from all the idfrd objects.

In case of vertical concatenation, the toolbox concatenates individual noise
models diagonally. The following shows that data.SpectrumData is a block
diagonal matrix of the power spectra and cross spectra of the output noise in
the system:

datal.s 0
data.s = K

0 dataN .s

s in data.s is the abbreviation for the SpectrumData property name.

See Also
The following operations also create idfrd objects:

¢ Transforming iddata objects. For more information, see “Transforming
Between Frequency-Domain and Frequency-Response Data” on page 2-130.

¢ Estimating nonparametric models using etfe, spa, and spafdr. For more
information, see “Identifying Frequency-Response Models” on page 3-2.

Representing Frequency-Response Data Using idfrd Objects

e Converting the Control System Toolbox frd object. For more information,
see “Using Models with Control System Toolbox Software” on page 9-2.

2-77

2 Data Import and Processing

2-78

Analyzing Data Quality

In this section...

“Is Your Data Ready for Modeling?” on page 2-78

“Plotting Data in the GUI Versus at the Command Line” on page 2-79
“How to Plot Data in the GUI” on page 2-79

“How to Plot Data at the Command Line” on page 2-85

“How to Analyze Data Using the advice Command” on page 2-87

Is Your Data Ready for Modeling?

Before you start estimating models from data, you should check your data for
the presence of any undesirable characteristics. For example, you might plot
the data to identify drifts and outliers. You plot analysis might lead you to
preprocess your data before model estimation.

The following data plots are available in the toolbox:

® Time plot — Shows data values as a function of time.

Tip You can infer time delays from time plots, which are required inputs
to most parametric models. A time delay is the time interval between the
change in input and the corresponding change in output.

® Spectral plot — Shows a periodogram that is computed by taking the
absolute squares of the Fourier transforms of the data, dividing by the
number of data points, and multiplying by the sampling interval.

® Frequency-response plot — For frequency-response data, shows the
amplitude and phase of the frequency-response function on a Bode plot. For
time- and frequency-domain data, shows the empirical transfer function
estimate (see etfe) .

See Also
“How to Analyze Data Using the advice Command” on page 2-87

Analyzing Data Quality

“Ways to Process Data for System Identification” on page 2-4

Plotting Data in the GUI Versus at the Command Line

The plots you create using the System Identification Tool GUI provide
options that are specific to the System Identification Toolbox product, such
as selecting specific channel pairs in a multivariate signals or converting
frequency units between Hertz and radians per second. For more information,
see “How to Plot Data in the GUI” on page 2-79.

The plots you create using the plot commands, such as plot, bode, and
ffplot, are displayed in the standard MATLAB Figure window, which
provides options for formatting, saving, printing, and exporting plots to a
variety of file formats. To learn about plotting at the command line, see “How
to Plot Data at the Command Line” on page 2-85. For more information about
working with Figure window, see the MATLAB Graphics documentation.

How to Plot Data in the GUI

¢ “How to Plot Data in the GUI” on page 2-79

e “Manipulating a Time Plot” on page 2-81

e “Manipulating Data Spectra Plot” on page 2-82

e “Manipulating a Frequency Function Plot” on page 2-84

How to Plot Data in the GUI

After importing data into the System Identification Tool GUI, as described in
“Importing Data into the GUI” on page 2-14, you can plot the data.

To create one or more plots, select the corresponding check box in the Data
Views area of the System Identification Tool GUI.

An active data icon has a thick line in the icon, while an inactive data set
has a thin line. Only active data sets appear on the selected plots. To toggle
including and excluding data on a plot, click the corresponding icon in the
System Identification Tool GUI. Clicking the data icon updates any plots
that are currently open.

2-79

2 Data Import and Processing

2-80

Thick lines indicate
active data sets
included in plots.

All three available

data plots are ~—— [Data spectra

selected.

When you have several data sets, you can view different input-output channel
pair by selecting that pair from the Channel menu. For more information
about selecting different input and output pairs, see “Selecting Measured and
Noise Channels in Plots” on page 11-18.

IImpu:urt data j o
l’ perations:
; : |~=c-- Preprocess j
data

-\ 1-
dataff - \\/\\»
data

==
datafd Wiarking Data
Estimate --= d
Diata Yiews
Ta To
[Time plct WWarkapace ||LT wiswer
[+ Frequency function] l
Exit
= Trash

In this example, data and dataff are active and appear on the three selected
plots.

To close a plot, clear the corresponding check box in the System Identification
Tool GUIL.

Tip To get information about working with a specific plot, select a help topic
from the Help menu in the plot window.

Analyzing Data Quality

Manipulating a Time Plot

The Time plot only shows time-domain data. In this example, datal is
displayed on the time plot because, of the three data sets, it is the only one
that contains time-domain input and output.

<) Time Plok: power->temperature

File Options Styvle Channel Help

Input and output signals

termperature

paver

2 L L 1
0 20 a0 &0 a0

Time

data3fd iz Frequency Datnaitn Data

Time Plot of datal

The following table summarizes options that are specific to time plots, which
you can select from the plot window menus. For general information about
working with System Identification Toolbox plots, see “Working with Plots in
the System Identification Tool GUI” on page 11-15.

2-81

2 Data Import and Processing

2-82

Time Plot Options

Action Command

Toggle input display between Select Style > Staircase input for
piece-wise continuous (zero-order zero-order hold or Style > Regular
hold) and linear interpolation input for first-order hold.

(first-order hold) between samples.

Note This option only affects the
display and not the intersample
behavior specified when importing
the data.

Manipulating Data Spectra Plot

The Data spectra plot shows a periodogram or a spectral estimate of data1
and data3fd.

The periodogram is computed by taking the absolute squares of the Fourier
transforms of the data, dividing by the number of data points, and multiplying
by the sampling interval. The spectral estimate for time-domain data is a
smoothed spectrum calculated using spa. For frequency-domain data, the
Data spectra plot shows the square of the absolute value of the actual data,
normalized by the sampling interval.

The top axes show the input and the bottom axes show the output. The
vertical axis of each plot is labeled with the corresponding channel name.

Analyzing Data Quality

=} Data Spectra: power->temperature

File Options Stwle Channel Help

- Petiodograrm

ternperature
=

10 L

e N

power
i
=

10° -

10"

10 10
Fregquency (radfs)
Periodograms of datal and data3fd
Data Spectra Plot Options
Action Command

Toggle display between periodogram
and spectral estimate.

Select Options > Periodogram or
Options > Spectral analysis.

Change frequency units.

Select Style > Frequency (rad/s)
or Style > Frequency (Hz).

Toggle frequency scale between
linear and logarithmic.

Select Style > Linear frequency
scale or Style > Log frequency
scale.

Toggle amplitude scale between
linear and logarithmic.

Select Style > Linear amplitude
scale or Style > Log amplitude
scale.

2-83

2 Data Import and Processing

2-84

Manipulating a Frequency Function Plot

For time-domain data, the Frequency function plot shows the empirical
transfer function estimate (etfe). For frequency-domain data, the plot shows
the ratio of output to input data.

The frequency-response plot shows the amplitude and phase plots of
the corresponding frequency response. For more information about
frequency-response data, see “Importing Frequency-Response Data into
MATLAB” on page 2-11.

<} Frequency Function Data: power- >tempera... !El
File Options Styvle Channel Help
10°

o

R

= -
pr

= W

% -5

10

G000

{uk]

=

)|

= 0 i]
%

£ 000 :

=

107 10 10°
Frequency {radis)

Frequency Functions of datal and data3fd

Analyzing Data Quality

Frequency Function Plot Options

Action

Command

Change frequency units.

Select Style > Frequency (rad/s)
or Style > Frequency (Hz).

Toggle frequency scale between
linear and logarithmic.

Select Style > Linear frequency
scale or Style > Log frequency
scale.

Toggle amplitude scale between
linear and logarithmic.

Select Style > Linear amplitude
scale or Style > Log amplitude

scale.

How to Plot Data at the Command Line

The following table summarizes the commands available for plotting
time-domain, frequency-domain, and frequency-response data.

Commands for Plotting Data

Command
bode

Description Example

To plot idfrd data:

For frequency-response data
only. Shows the magnitude
and phase of the frequency
response on a logarithmic
frequency scale of a Bode
plot.

bode (idfrd_data)

ffplot For frequency-response To plot idfrd data:
data only. Shows the
magnitude and phase of
the frequency response on
a linear frequency scale

(hertz).

The type of plot corresponds
to the type of data.

For example, plotting
time-domain data generates
a time plot, and plotting

ffplot(idfrd_data)

plot To plot iddata or idfrd

data:

plot(data)

2-85

2 Data Import and Processing

2-86

Commands for Plotting Data (Continued)

Command Description Example

frequency-response
data generates a

frequency-response plot. Note For idfrd data, this
When plotting time- or command is equivalent to
ffplot(data).

frequency-domain inputs
and outputs, the top axes
show the output and the
bottom axes show the input.

All plot commands display the data in the standard MATLAB Figure window.
For more information about working with the Figure window, see the
MATLAB Graphics documentation.

To plot portions of the data, you can subreference specific samples (see
“Subreferencing iddata Objects” on page 2-57 and “Subreferencing idfrd
Objects” on page 2-72. For example:

plot(data(1:300))

For time-domain data, to plot only the input data as a function of time, use
the following syntax:

plot(data(:,[],:)

When data.intersample = 'zoh', the input is piece-wise constant between
sampling points on the plot. For more information about properties, see the
iddata reference page.

You can generate plots of the input data in the time domain using:

plot(data.sa,data.u)

To plot frequency-domain data, you can use the following syntax:

semilogx(data.fr,abs(data.u))

Analyzing Data Quality

In this case, sa is an abbreviation of the iddata property SamplingInstants.
Similarly, fr is an abbreviation of Frequency. u is the input signal.

Note The frequencies are linearly spaced on the plot.

When you specify to plot a multivariable iddata object, each input-output
combination is displayed one at a time in the same MATLAB Figure window.
You must press Enter to update the Figure window and view the next
channel combination. To cancel the plotting operation, press Ctrl+C.

Tip To plot specific input and output channels, use plot(data(:,ky,ku)),
where ky and ku are specific output and input channel indexes or names. For
more information about subreferencing channels, see “Subreferencing Data
Channels” on page 2-59.

To plot several iddata sets d1,...,dN, use plot(di,...,dN). Input-output
channels with the same experiment name, input name, and output name
are always plotted in the same plot.

How to Analyze Data Using the advice Command

You can use the advice command to analyze time- or frequency- domain
data before estimating a model. The resulting report informs you about the
possible need to preprocess the data and identifies potential restrictions on
the model accuracy. You should use these recommendations in combination
with plotting the data and validating the models estimated from this data.

Note advice does not support frequency-response data.

Before applying the advice command to your data, you must have represented
your data as an iddata object. For more information, see “Representing Time-
and Frequency-Domain Data Using iddata Objects” on page 2-49.

2-87

2 Data Import and Processing

2-88

If you are using the System Identification Tool GUI, you must export your
data to the MATLAB workspace before you can use the advice command on
this data. For more information about exporting data, see “Exporting Models
from the GUI to the MATLAB Workspace” on page 11-13.

Use the following syntax to get advice about an iddata object data:
advice(data)

For more information about the advice syntax, see the advice reference page.

Advice provide guidance for these kinds of questions:

® Does it make sense to remove constant offsets and linear trends from the
data?

e What are the excitation levels of the signals and how does this affects the
model orders?

® s there an indication of output feedback in the data? When feedback
1s present in the system, only prediction-error methods work well for
estimating closed-loop data.

e What is the estimated input-output delay in the system (dead time)?

See Also

advice
delayest
detrend
feedback

pexcit

Selecting Subsets of Data

Selecting Subsets of Data

In this section...
“Why Select Subsets of Data?” on page 2-89
“Selecting Data Using the GUI” on page 2-90

“Selecting Data at the Command Line” on page 2-92

Why Select Subsets of Data?

You can use data selection to create independent data sets for estimation
and validation.

You can also use data selection as a way to clean the data and exclude parts
with noisy or missing information. For example, when your data contains
missing values, outliers, level changes, and disturbances, you can select one
or more portions of the data that are suitable for identification and exclude
the rest.

If you only have one data set and you want to estimate linear models, you
should split the data into two portions to create two independent data sets for
estimation and validation, respectively. Splitting the data is selecting parts of
the data set and saving each part independently.

You can merge several data segments into a single multiexperiment data set
and identify an average model. For more information, see “Importing Data
into the GUI” on page 2-14 or “Representing Time- and Frequency-Domain
Data Using iddata Objects” on page 2-49.

Note Subsets of the data set must contain enough samples to adequately
represent the system, and the inputs must provide suitable excitation to the
system.

Selecting potions of frequency-domain data is equivalent to filtering the data.
For more information about filtering, see “Filtering Data” on page 2-109.

2-89

2 Data Import and Processing

2-90

Selecting Data Using the GUI

®* “Ways to Select Data in the GUI” on page 2-90
® “Selecting a Range for Time-Domain Data” on page 2-90

e “Selecting a Range of Frequency-Domain Data” on page 2-92

Ways to Select Data in the GUI

You can use System Identification Tool GUI to select ranges of data on a
time-domain or frequency-domain plot. Selecting data in the frequency
domain is equivalent to passband-filtering the data.

After you select portions of the data, you can specify to use one data segment
for estimating models and use the other data segment for validating models.
For more information, see “Specifying Estimation and Validation Data” on
page 2-31.

Note Selecting <--Preprocess > Quick start performs the following actions
simultaneously:

Remove the mean value from each channel.

Split the data into two parts.

Specify the first part as estimation data (or Working Data).

Specify the second part as Validation Data.

Selecting a Range for Time-Domain Data

You can select a range of data values on a time plot and save it as a new data
set in the System Identification Tool GUI.

Note Selecting data does not extract experiments from a data set containing
multiple experiments. For more information about multiexperiment data, see
“Creating Multiexperiment Data Sets in the GUI” on page 2-35.

Selecting Subsets of Data

To extract a subset of time-domain data and save it as a new data set:

1 Import time-domain data into the System Identification Tool GUI, as
described in “Importing Data into the GUI” on page 2-14.

2 Drag the data set you want to subset to the Working Data area.

3 If your data contains multiple I/O channels, in the Channel menu, select
the channel pair you want to view. The upper plot corresponds to the input
signal, and the lower plot corresponds to the output signal.

Although you view only one I/O channel pair at a time, your data selection
1s applied to all channels in this data set.

4 Select the data of interest in either of the following ways:

® Graphically — Draw a rectangle on either the input-signal or the
output-signal plot with the mouse to select the desired time interval.
Your selection appears on both plots regardless of the plot on which you
draw the rectangle. The Time span and Samples fields are updated to
match the selected region.

¢ By specifying the Time span — Edit the beginning and the end times
in seconds. The Samples field is updated to match the selected region.
For example:

28.5 56.8

® By specifying the Samples range — Edit the beginning and the end
indices of the sample range. The Time span field is updated to match
the selected region. For example:

342 654

Note To clear your selection, click Revert.

5 In the Data name field, enter the name of the data set containing the
selected data.

6 Click Insert. This action saves the selection as a new data set and adds
it to the Data Board.

2-91

2 Data Import and Processing

7 To select another range, repeat steps 4 to 6.

Selecting a Range of Frequency-Domain Data

Selecting a range of values in frequency domain is equivalent to filtering
the data. For more information about data filtering, see “Filtering
Frequency-Domain or Frequency-Response Data in the GUI” on page 2-112.

Selecting Data at the Command Line
Selecting ranges of data values is equivalent to subreferencing the data.

For more information about subreferencing time-domain and
frequency-domain data, see “Subreferencing iddata Objects” on page 2-57.

For more information about subreferencing frequency-response data, see
“Subreferencing idfrd Objects” on page 2-72.

2-92

Handling Missing Data and Outliers

Handling Missing Data and Outliers

In this section...

“Handling Missing Data” on page 2-93
“Handling Outliers” on page 2-94
“Example — Extracting and Modeling Specific Data Segments” on page 2-95

“See Also” on page 2-96

Handling Missing Data

Data acquisition failures sometimes result in missing measurements both in
the input and the output signals. When you import data that contains missing
values using the MATLAB Import Wizard, these values are automatically set
to NaN (“Not-a-Number”). NaN serves as a flag for nonexistent or undefined
data. When you plot data on a time-plot that contains missing values, gaps
appear on the plot where missing data exists.

You can use misdata to estimate missing values. This command linearly
interpolates missing values to estimate the first model. Then, it uses this
model to estimate the missing data as parameters by minimizing the output
prediction errors obtained from the reconstructed data. You can specify the
model structure you want to use in the misdata argument or estimate a
default-order model using the n4sid method. For more information, see the
misdata reference page.

Note You can only use misdata on time-domain data stored in an iddata
object. For more information about creating iddata objects, see “Representing
Time- and Frequency-Domain Data Using iddata Objects” on page 2-49.

For example, suppose y and u are output and input signals that contain NaNs.
This data is sampled at 0.2 s. The following syntax creates a new iddata
object with these input and output signals.

dat = iddata(y,u,0.2) % y and u contain NaNs
representing missing data

[
“©

2-93

2 Data Import and Processing

2-94

Apply the misdata command to the new data object. For example:

dat1 = misdata(dat);
plot(dat,datl) % Check how the missing data
% was estimated on a time plot

Handling Outliers

Malfunctions can produce errors in measured values, called outliers. Such
outliers might be caused by signal spikes or by measurement malfunctions.
If you do not remove outliers from your data, this can adversely affect the
estimated models.

To identify the presence of outliers, perform one of the following tasks:

® Before estimating a model, plot the data on a time plot and identify values
that appear out of range.

e After estimating a model, plot the residuals and identify unusually large
values. For more information about plotting residuals, see “Residual
Analysis” on page 8-21. Evaluate the original data that is responsible for
large residuals. For example, for the model Model and validation data
Data, you can use the following commands to plot the residuals:

% Compute the residuals
E = resid(Model,Data)

% Plot the residuals
plot(E)

Next, try these techniques for removing or minimizing the effects of outliers:

e Extract the informative data portions into segments and merge them into
one multiexperiment data set (see “Example — Extracting and Modeling
Specific Data Segments” on page 2-95). For more information about
selecting and extracting data segments, see “Selecting Subsets of Data”
on page 2-89.

Handling Missing Data and Outliers

Tip The inputs in each of the data segments must be consistently exciting
the system. Splitting data into meaningful segments for steady-state
data results in minimum information loss. Avoid making data segments
too small.

® Manually replace outliers with NaNs and then use the misdata command
to reconstruct flagged data. This approach treats outliers as missing data
and is described in “Handling Missing Data” on page 2-93. Use this method
when your data contains several inputs and outputs, and when you have
difficulty finding reliable data segments in all variables.

® Remove outliers by prefiltering the data for high-frequency content because
outliers often result from abrupt changes. For more information about
filtering, see “Filtering Data” on page 2-109.

Note The estimation algorithm handles outliers automatically by assigning
a smaller weight to outlier data. A robust error criterion applies an error
penalty that is quadratic for small and moderate prediction errors, and is
linear for large prediction errors. Because outliers produce large prediction
errors, this approach gives a smaller weight to the corresponding data points
during model estimation. The value LimitError (see Algorithm Properties)
quantitatively distinguishes between moderate and large outliers.

Example - Extracting and Modeling Specific Data
Segments

The following example shows how to create a multiexperiment, time-domain
data set by merging only the accurate-data segments and ignoring the rest.
Modeling multiexperiment data sets produces an average model for the
different experiments.

You cannot simply concatenate the good data segments because the transients
at the connection points compromise the model. Instead, you must create a
multiexperiment iddata object, where each experiment corresponds to a good
segment of data, as follows:

2-95

2 Data Import and Processing

2-96

% Plot the data in a MATLAB Figure window
plot(data)

o°

Create multiexperiment data set

by merging data segments

datam = merge(data(1:340),...
data(500:897),...
data(1001:1200),
data(1550:2000));

o°

o°

Model the multiexperiment data set
using "experiments" 1, 2, and 4
=pem(getexp(datam,[1,2,4]))

o°

3

o°

Validate the model by comparing its output to
the output data of experiment 3
compare(getexp(datam,3),m)

o°

See Also

To learn more about the theory of handling missing data and outliers, see the
chapter on preprocessing data in System Identification: Theory for the User,
Second Edition, by Lennart Ljung, Prentice Hall PTR, 1999.

Handling Offsets and Trends in Data

Handling Offsets and Trends in Data

In this section...
“When to Detrend Data” on page 2-97

“Alternatives for Detrending Data in GUI or at the Command-Line” on
page 2-98

“How to Detrend Data Using the GUI” on page 2-99
“How to Detrend Data at the Command Line” on page 2-99
“Next Steps After Detrending” on page 2-101

When to Detrend Data

Detrending is removing means, offsets, or linear trends from regularly
sampled time-domain input-output data signals. This data processing
operation helps you estimate more accurate linear models because linear
models cannot capture arbitrary differences between the input and output
signal levels. The linear models you estimate from detrended data describe
the relationship between the change in input signals and the change in output
signals.

For steady-state data, you should remove mean values and linear trends
from both input and output signals.

For transient data, you should remove physical-equilibrium offsets measured
prior to the excitation input signal.

Remove one linear trend or several piecewise linear trends when the levels
drift during the experiment. Signal drift is considered a low-frequency
disturbance and can result in unstable models.

You should not detrend data before model estimation when you want:

¢ Linear models that capture offsets essential for describing important
system dynamics. For example, when a model contains integration
behavior, you could estimate a low-order transfer function (process model)
from nondetrended data. For more information, see “Identifying Low-Order
Transfer Functions (Process Models)” on page 3-20.

2-97

2 Data Import and Processing

® Nonlinear black-box models, such as nonlinear ARX or
Hammerstein-Wiener models. For more information, see Chapter 4,
“Nonlinear Black-Box Model Identification”.

Tip When signals vary around a large signal level, you can improve
computational accuracy of nonlinear models by detrending the signal
means.

¢ Nonlinear ODE parameters (nonlinear grey-box models). For more
information, see “Estimating Nonlinear Grey-Box Models” on page 5-16.

To simulate or predict the linear model response at the system operating
conditions, you can restore the removed trend to the simulated or predicted
model output using the retrend command.

For more information about handling drifts in the data, see the chapter on
preprocessing data in System Identification: Theory for the User, Second
Edition, by Lennart Ljung, Prentice Hall PTR, 1999.

Alternatives for Detrending Data in GUI or at the
Command-Line

You can detrend data using the System Identification Tool GUI and at the
command line using the detrend command.

Both the GUI and the command line let you subtract the mean values and one
linear trend from steady-state time-domain signals.

However, the detrend command provides the following additional
functionality (not available in the GUI):

® Subtracting piecewise linear trends at specified breakpoints. A breakpoint
is a time value that defines the discontinuities between successive linear
trends.

® Subtracting arbitrary offsets and linear trends from transient data signals.

® Saving trend information to a variable so that you can apply it to multiple
data sets.

2-98

Handling Offsets and Trends in Data

To learn how to detrend data, see:

e “How to Detrend Data Using the GUI” on page 2-99
e “How to Detrend Data at the Command Line” on page 2-99

How to Detrend Data Using the GUI

Before you can perform this task, you must have regularly-sampled,
steady-state time-domain data imported into the System Identification Tool
GUI. See “Importing Time-Domain Data into the GUI” on page 2-16). For
transient data, see “How to Detrend Data at the Command Line” on page 2-99.

Tip You can use the shortcut Preprocess > Quick start to perform several
operations: remove the mean value from each signal, split data into two
halves, specify the first half as model estimation data (or Working Data),
and specify the second half as model Validation Data.

1 In the System Identification Tool, drag the data set you want to detrend to
the Working Data rectangle.

2 Detrend the data.
® To remove linear trends, select Preprocess > Remove trends.

¢ To remove mean values from each input and output data signal, select
Preprocess > Remove means.

How to Detrend Data at the Command Line

¢ “Detrending Steady-State Data” on page 2-99
¢ “Detrending Transient Data” on page 2-100
® “See Also” on page 2-101

Detrending Steady-State Data

Before you can perform this task, you must have time-domain data as an
iddata object. See “Representing Time- and Frequency-Domain Data Using
iddata Objects” on page 2-49.

2-99

2 Data Import and Processing

2-100

Note If you plan to estimate models from this data, your data must be
regularly sampled.

Use the detrend command to remove the signal means or linear trends:

[data_d,T]=detrend(data,Type)

where data is the data to be detrended. The second input argument
Type=0 removes signal means or Type=1 removes linear trends. data_d is
the detrended data. T is a TrendInfo object that stores the values of the
subtracted offsets and slopes of the removed trends.

Detrending Transient Data
Before you can perform this task, you must have

® Time-domain data as an iddata object. See “Representing Time- and
Frequency-Domain Data Using iddata Objects” on page 2-49.

Note If you plan to estimate models from this data, your data must be
regularly sampled.

e Values of the offsets you want to remove from the input and output data.
If you do not know these values, visually inspect a time plot of your data.
For more information, see “How to Plot Data at the Command Line” on
page 2-85.

1 Create a default object for storing input-output offsets that you want to
remove from the data.

T = getTrend(data)
where T 1s a TrendInfo object.
2 Assign offset values to T.

T.InputOffset=I_value;

Handling Offsets and Trends in Data

T.OutputOffset=0_value;

where I _value is the input offset value, and 0_value is the input offset
value.

3 Remove the specified offsets from data.

data_d = detrend(data,T)

where the second input argument T stores the offset values as its properties.

See Also

detrend

TrendInfo

Next Steps After Detrending

After detrending your data, you might do the following:

¢ Perform other data preprocessing operations. See “Ways to Process Data
for System Identification” on page 2-4.

® Estimate a linear model. See Chapter 3, “Linear Model Identification”.

2-101

2 Data Import and Processing

Resampling Data

2-102

In this section...

“What Is Resampling?” on page 2-102

“Resampling Data Using the GUI” on page 2-103
“Resampling Data at the Command Line” on page 2-103
“Resampling Data Without Aliasing Effects” on page 2-105
“See Also” on page 2-108

What Is Resampling?

Resampling data signals in the System Identification Toolbox product applies
an antialiasing (lowpass) FIR filter to the data and changes the sampling rate
of the signal by decimation or interpolation.

If your data is sampled faster than needed during the experiment, you can
decimate it without information loss. If your data is sampled more slowly
than needed, there is a possibility that you miss important information
about the dynamics at higher frequencies. Although you can resample the
data at a higher rate, the resampled values occurring between measured
samples do not represent measured information about your system. Instead
of resampling, repeat the experiment using a higher sampling rate.

Tip You should decimate your data when it contains high-frequency noise
outside the frequency range of the system dynamics.

Resampling takes into account how the data behaves between samples, which
you specify when you import the data into the System Identification Tool
GUI (zero-order or first-order hold). For more information about the data
properties you specify before importing the data, see “Importing Data into
the GUI” on page 2-14.

You can resample data using the System Identification Tool GUI or the
resample command. You can only resample time-domain data at uniform
time intervals.

Resampling Data

Resampling Data Using the GUI

Use the System Identification Tool GUI to resample time-domain data. To
specify additional options, such as the prefilter order, see “Resampling Data
at the Command Line” on page 2-103.

The System Identification Tool GUI uses idresamp to interpolate or decimate
the data. For more information about this command, type help idresamp at
the prompt.

To create a new data set by resampling the input and output signals:

1 Import time-domain data into the System Identification Tool GUI, as
described in “Importing Data into the GUI” on page 2-14.

2 Drag the data set you want to resample to the Working Data area.

3 In the Resampling factor field, enter the factor by which to multiply the
current sampling interval:

¢ For decimation (fewer samples), enter a factor greater than 1 to increase
the sampling interval by this factor.

® For interpolation (more samples), enter a factor less than 1 to decrease
the sampling interval by this factor.

Default = 1.

4 In the Data name field, type the name of the new data set. Choose a name
that is unique in the Data Board.

5 Click Insert to add the new data set to the Data Board in the System
Identification Toolbox window.

6 Click Close to close the Resample dialog box.

Resampling Data at the Command Line

Use resample to decimate and interpolate time-domain iddata objects. You
can specify the order of the antialiasing filter as an argument.

2-103

2 Data Import and Processing

2-104

Note resample uses the Signal Processing Toolbox™ command, when this
toolbox 1s installed on your computer. If this toolbox is not installed, use
idresamp instead. idresamp only lets you specify the filter order, whereas
resample also lets you specify filter coefficients and the design parameters
of the Kaiser window.

To create a new iddata object datar by resampling data, use the following
syntax:

datar = resample(data,P,Q,filter_order)

In this case, P and Q are integers that specify the new sampling interval: the
new sampling interval is Q/P times the original one. You can also specify the
order of the resampling filter as a fourth argument filter_order, which is
an integer (default is 10). For detailed information about resample, see the
corresponding reference page.

For example, resample(data,1,Q) results in decimation with the sampling
interval modified by a factor Q.

The next example shows how you can increase the sampling rate by a factor of
1.5 and compare the signals:

plot(u)
ur = resample(u,3,2);
plot(u,ur)

When the Signal Processing Toolbox product is not installed, using resample
calls idresamp instead.

idresamp uses the following syntax:

datar = idresamp(data,R,filter_order)

In this case, R=Q/P, which means that data is interpolated by a factor P and
then decimated by a factor Q. To learn more about idresamp, type help
idresamp.

Resampling Data

The data.InterSample property of the iddata object is taken into account
during resampling (for example, first-order hold or zero-order hold). For more
information, see “iddata Properties” on page 2-52.

Resampling Data Without Aliasing Effects

Typically, you decimate a signal to remove the high-frequency contributions
that result from noise from the total energy. Ideally, you want to remove the
energy contribution due to noise and preserve the energy density of the signal.

The command resample performs the decimation without aliasing effects.
This command includes a factor of 7' to normalize the spectrum and preserve
the energy density after decimation. For more information about spectrum
normalization, see “Spectrum Normalization” on page 3-8.

If you use manual decimation instead of resample—by picking every fourth
sample from the signal, for example—the energy contributions from higher
frequencies are folded back into the lower frequencies. Because the total
signal energy is preserved by this operation and this energy must now be
squeezed into a smaller frequency range, the amplitude of the spectrum at
each frequency increases. Thus, the energy density of the decimated signal
is not constant.

2-105

2 Data Import and Processing

The following example illustrates how resample avoids folding effects:

% Construct fourth-order MA-process
mO0 = idpoly(1,[1,[1 1 1 1]);
Generate error signal

o°

e = idinput (2000, 'rgs');

e = iddata([],e, 'Ts',1);

% Simulate the output using error signal

y = sim(mO,e);

% Estimate signal spectrum

g1 = spa(y);

% Estimate spectrum of modified signal including

o°

every fourth sample of the original signal.

% This command automatically sets Ts to 4.

g2 = spa(y(1:4:2000));

% Plot frequency response to view folding effects
ffplot(gl,92)

% Estimate spectrum after prefiltering that does not
% introduce folding effects

g3 = spa(resample(y,1,4));

figure

ffplot(g1,93)

2-106

Resampling Data

) Figure 1 o] B4
File Edit Yiew Insert Tools Desktop ‘Window Help L
DEedS| KRAN9 08|00
2 FPower spectrum for signal y1
10 T T T

Power
=]

1] 0.1 0z 0.3 0.4 0.5
Frequency (1/5)

Folding Effects with Manual Decimation

2-107

2 Data Import and Processing

Use resample to decimate the signal before estimating the spectrum and plot
the frequency response, as follows:

g3 = spa(resample(y,1,4));
figure
ffplot(g1,93)

The following figure shows that the estimated spectrum of the resampled
signal has the same amplitude as the original spectrum. Thus, there is no
indication of folding effects when you use resample to eliminate aliasing.

) Figure 2 o [m]
File Edit Yiew Insert Tools Desktop ‘Window Help N
PwdH& MARaQaMe|E| 08| 2O
. Fower spectrum for signal 1
10 . .
o' T :
£ 0
z 10 E
[
o} .
10'2 1 I I 1
a 0.1 0.2 0.3 0.4 0.5
Frequency (1/5)

No Folding Effects When Using resample

See Also

For a detailed discussion about handling disturbances, see the chapter on
preprocessing data in System Identification: Theory for the User, Second
Edition, by Lennart Ljung, Prentice Hall PTR, 1999.

2-108

Filtering Data

Filtering Data

In this section...

“Supported Filters” on page 2-109

“Choosing to Prefilter Your Data” on page 2-109

“How to Filter Data Using the GUI” on page 2-110

“How to Filter Data at the Command Line” on page 2-113
“See Also” on page 2-116

Supported Filters

You can filter the input and output signals through a linear filter before
estimating a model in the System Identification Tool GUI or at the command
line. How you want to handle the noise in the system determines whether it
is appropriate to prefilter the data.

The filter available in the System Identification Tool GUI is a fifth-order
(passband) Butterworth filter. If you need to specify a custom filter, use the
idfilt command.

Choosing to Prefilter Your Data

Prefiltering data can help remove high-frequency noise or low-frequency
disturbances (drift). The latter application is an alternative to subtracting
linear trends from the data, as described in “Handling Offsets and Trends
in Data” on page 2-97.

In addition to minimizing noise, prefiltering lets you focus your model on
specific frequency bands. The frequency range of interest often corresponds
to a passband over the breakpoints on a Bode plot. For example, if you are
modeling a plant for control-design applications, you might prefilter the data
to specifically enhance frequencies around the desired closed-loop bandwidth.

Prefiltering the input and output data through the same filter does not change

the input-output relationship for a linear system. However, prefiltering does
change the noise characteristics and affects the estimated model of the system.

2-109

2 Data Import and Processing

To get a reliable noise model, avoid prefiltering the data. Instead, set
the Focus property of the estimation algorithm to Simulation. For more
information about the Focus property, see the Algorithm Properties
reference page.

Note When you prefilter during model estimation, the filtered data is used to
only model the input-to-output dynamics. However, the disturbance model is
calculated from the unfiltered data.

How to Filter Data Using the GUI

¢ “Filtering Time-Domain Data in the GUI” on page 2-110

¢ “Filtering Frequency-Domain or Frequency-Response Data in the GUI” on
page 2-112

Filtering Time-Domain Data in the GUI

The System Identification Tool GUI lets you filter time-domain data using a
fifth-order Butterworth filter by enhancing or selecting specific passbands.

To create a filtered data set:

1 Import time-domain data into the System Identification Tool GUI, as
described in “Importing Data into the GUI” on page 2-14.

2 Drag the data set you want you want to filter to the Working Data area.

3 Select <--Preprocess > Filter. By default, this selection shows a
periodogram of the input and output spectra (see the etfe reference page).

Note To display smoothed spectral estimates instead of the periodogram,
select Options > Spectral analysis. This spectral estimate is computed
using spa and your previous settings in the Spectral Model dialog box.
To change these settings, select <--Estimate > Spectral model in the
System Identification Tool GUI, and specify new model settings.

2-110

Filtering Data

4 If your data contains multiple input/output channels, in the Channel
menu, select the channel pair you want to view. Although you view only
one channel pair at a time, the filter applies to all input/output channels
in this data set.

5 Select the data of interest using one of the following ways:

¢ Graphically — Draw a rectangle with the mouse on either the
input-signal or the output-signal plot to select the desired frequency
interval. Your selection is displayed on both plots regardless of the plot
on which you draw the rectangle. The Range field is updated to match
the selected region. If you need to clear your selection, right-click the
plot.

¢ Specify the Range — Edit the beginning and the end frequency values.
For example:

8.5 20.0 (rad/s).

Tip To change the frequency units from rad/s to Hz, select
Style > Frequency (Hz). To change the frequency units from Hz to
rad/s, select Style > Frequency (rad/s).

6 In the Range is list, select one of the following:
® Pass band — Allows data in the selected frequency range.

e Stop band — Excludes data in the selected frequency range.

7 Click Filter to preview the filtered results. If you are satisfied, go to step 8.
Otherwise, return to step 5.

8 In the Data name field, enter the name of the data set containing the
selected data.

9 Click Insert to save the selection as a new data set and add it to the Data
Board.

10 To select another range, repeat steps 5 to 9.

2-111

2 Data Import and Processing

2-112

Filtering Frequency-Domain or Frequency-Response Data in
the GUI

For frequency-domain and frequency-response data, filtering is equivalent to
selecting specific data ranges.

To select a range of data in frequency-domain or frequency-response data:

1 Import data into the System Identification Tool GUI, as described in
“Importing Data into the GUI” on page 2-14.

2 Drag the data set you want you want to filter to the Working Data area.

3 Select <--Preprocess > Select range. This selection displays one of the
following plots:

® Frequency-domain data — Plot shows the absolute of the squares of the
input and output spectra.

® Frequency-response data — Top axes show the frequency response
magnitude equivalent to the ratio of the output to the input, and the
bottom axes show the ratio of the input signal to itself, which has the
value of 1 at all frequencies.

4 If your data contains multiple input/output channels, in the Channel
menu, select the channel pair you want to view. Although you view only
one channel pair at a time, the filter applies to all input/output channels
in this data set.

5 Select the data of interest using one of the following ways:

¢ Graphically — Draw a rectangle with the mouse on either the
input-signal or the output-signal plot to select the desired frequency
interval. Your selection is displayed on both plots regardless of the plot
on which you draw the rectangle. The Range field is updated to match
the selected region.

If you need to clear your selection, right-click the plot.
® Specify the Range — Edit the beginning and the end frequency values.
For example:

8.5 20.0 (rad/s).

Filtering Data

Tip If you need to change the frequency units from rad/s to Hz, select
Style > Frequency (Hz). To change the frequency units from Hz to
rad/s, select Style > Frequency (rad/s).

6 In the Range is list, select one of the following:
® Pass band — Allows data in the selected frequency range.

® Stop band — Excludes data in the selected frequency range.

7 In the Data name field, enter the name of the data set containing the
selected data.

8 Click Insert. This action saves the selection as a new data set and adds
it to the Data Board.

9 To select another range, repeat steps 5 to 8.

How to Filter Data at the Command Line

® “Simple Passband Filter” on page 2-113
¢ “Defining a Custom Filter” on page 2-114

® “Causal and Noncausal Filters” on page 2-115

Simple Passband Filter
Use idfilt to apply passband and other custom filters to a time-domain or
a frequency-domain iddata object.

In general, you can specify any custom filter. Use this syntax to filter an
iddata object data using the filter called filter:

fdata = idfilt(data,filter)

In the simplest case, you can specify a passband filter for time-domain data
using the following syntax:

fdata = idfilt(data,[wl wh])

2-113

2 Data Import and Processing

2-114

In this case, w1 and wh represent the low and high frequencies of the passband,
respectively.

You can specify several passbands, as follows:

filter=[[w1l,wih];[w21,w2h];;[wnl,wnh]]

The filter is an n-by-2 matrix, where each row defines a passband in radians
per second.

To define a stopband between ws1 and ws2, use
filter = [0 ws1; ws2 Nyqf]
where, Nygf is the Nyquist frequency.

For time-domain data, the passband filtering is cascaded Butterworth
filters of specified order. The default filter order is 5. The Butterworth
filter is the same as butter in the Signal Processing Toolbox product. For
frequency-domain data, select the indicated portions of the data to perform
passband filtering.

Defining a Custom Filter

Use idfilt to apply passband and other custom filters to a time-domain or
a frequency-domain iddata object.

In general, you can specify any custom filter. Use this syntax to filter an
iddata object data using the filter called filter:

fdata = idfilt(data,filter)

You can define a general single-input/single-output (SISO) system for filtering
time-domain or frequency-domain data. For frequency-domain only, you can
specify the (nonparametric) frequency response of the filter.

You use this syntax to filter an iddata object data using a custom filter
specified by filter:

fdata = idfilt(data,filter)

filter can be also any of the following:

Filtering Data

filter = idm
filter {num,den}
filter {A,B,C,D}

idmis a SISO idmodel or LTI object. For more information about LTI objects,
see the Control System Toolbox documentation.

{num,den} defines the filter as a transfer function as a cell array of numerator
and denominator filter coefficients.

{A,B,C,D} is a cell array of SISO state-space matrices.

Specifically for frequency-domain data, you specify the frequency response
of the filter:

filter = Wf

Here, W is a vector of real or complex values that define the filter
frequency response, where the inputs and outputs of data at frequency
data.Frequency(kf) are multiplied by Wf (kf). Wf is a column vector with
the length equal to the number of frequencies in data.

When data contains several experiments, Wf is a cell array with the length
equal to the number of experiments in data.

Causal and Noncausal Filters

For time-domain data, the filtering is causal by default. Causal filters
typically introduce a phase shift in the results. To use a noncausal zero-phase
filter (corresponding to filtfilt in the Signal Processing Toolbox product),
specify a third argument in idfilt:

fdata = idfilt(data,filter, 'noncausal')

For frequency-domain data, the signals are multiplied by the frequency
response of the filter. With the filters defined as passband filters, this
calculation gives ideal, zero-phase filtering (“brick wall filters”). Frequencies
that have been assigned zero weight by the filter (outside the passband or
via frequency response) are removed.

2-115

2 Data Import and Processing

2-116

When you apply idfilt to an idfrd data object, the data is first converted

to a frequency-domain iddata object (see “Transforming Between
Frequency-Domain and Frequency-Response Data” on page 2-130). The result
1s an iddata object.

See Also

To learn how to filter data during linear model estimation instead, you can
set the Focus property of the estimation algorithm to Filter and specify the
filter characteristics. For more information about model properties, see the
Algorithm Properties reference page.

For more information about prefiltering data, see the chapter on preprocessing
data in System Identification: Theory for the User, Second Edition, by Lennart
Ljung, Prentice Hall PTR, 1999.

For practical examples of prefiltering data, see the section on posttreatment
of data in Modeling of Dynamic Systems, by Lennart Ljung and Torkel Glad,
Prentice Hall PTR, 1994.

Generating Data Using Simulation

Generating Data Using Simulation

In this section...

“Commands for Generating and Simulating Data” on page 2-117
“Example — Creating Data with Periodic Inputs” on page 2-118
“Example — Generating Data Using Simulation” on page 2-119

“Simulating Data Using Other MathWorks Products” on page 2-120

Commands for Generating and Simulating Data

You can generate input data and simulate output data using a specified
model structure.

Simulating output data requires that you have a parametric model. For more
information about commands for constructing models, see “Commands for
Constructing Model Structures” on page 1-16.

To generate input data, use idinput to construct a signal with the desired
characteristics, such as a random Gaussian or binary signal or a sinusoid.
idinput returns a matrix of input values.

The following table lists the commands you can use to simulate output data.
For more information about these commands, see the corresponding reference

pages.

Commands for Generating and Simulating Data

Command Description Example
iddata Constructs an iddata To construct input data data, use the
object with input following command:

channels only.
data = iddata([1,[u Vv])

u is the input data, and v is white noise.

2-117

2 Data Import and Processing

Commands for Generating and Simulating Data (Continued)

Command

Description

Example

idinput

Constructs a signal
with the desired
characteristics, such
as a random Gaussian
or binary signal or a
sinusoid, and returns a
matrix of input values.

u = iddata([1],..-

idinput (400, 'rbs', [0 0.3]));

sim

Simulates response data
based on existing linear
or nonlinear parametric
model in the MATLAB
workspace.

To simulate the model output y for a given
input, use the following command:

y = sim(m,data)

m is the model object name, and data is input
data matrix or iddata object.

Example - Creating Data with Periodic Inputs

1 Create a periodic input for two inputs and consisting of five periods, where
each period is 300 samples.

per_u = idinput([300 2 5])

2 Create an iddata object using the periodic input and leaving the output
empty.

u = iddata([],per_u, 'Period’',...

[300; 300]);

You can use the periodic input to simulate the output, and the use etfe to
compute the estimated response of the model.

% Construct polynomial model

m0 =idpoly([1 -1.5 0.7],[0 1 0.5]);
% Construct random binary input

u = idinput([10 1 150],'rbs');

2-118

Generating Data Using Simulation

o°

Construct input data and noise

u = iddata([],u, 'Period',10);

e = iddata([],randn(1500,1));

% Simulate model output with noise
y = sim(mO,[u e])

% Estimate frequency response

g = etfe([y ul)

% Generate Bode plot

bode(g, 'x',m0)

For periodic input, etfe honors the period and computes the frequency
response using an appropriate frequency grid. In this case, the Bode plot
shows a good fit at the five excited frequencies.

Example - Generating Data Using Simulation

This example demonstrates how you can create input data and a model, and
then use the data and the model to simulate output data. You create the
ARMAX model and simulate output data with random binary input u.

1 Load the three-input and one-output sample data.

load iddata8

2 Construct an ARMAX model, using the following commands:

A=11-1.20.7];

B(1,:) = [0 1 0.5 0.1]; % first input
B(2,:) = [0 1.5 -0.5 0]; % second input
B(3,:) = [0 -0.1 0.5 -0.1]; % third input
C=1[10000];

Ts = 1;

m = idpoly(A,B,C,'Ts',1);

In this example, the leading zeros in the B matrix indicate the input delay
(nk), which is 1 for each input channel. The trailing zero in B(2, :) makes
the number of coefficients equal for all channels.

3 Construct pseudorandom binary data for input to the simulation.

u = idinput([200,3], 'prbs');

2-119

2 Data Import and Processing

2-120

4 Simulate the model output.
sim(m,u)

5 Compare model output to measured data to see how well the models
captures the underlying dynamics.

compare(z8,m)

Simulating Data Using Other MathWorks Products

You can also simulate data using the Simulink® and Signal Processing
Toolbox software. Data simulated outside the System Identification Toolbox
product must be in the MATLAB workspace. For more information about
simulating models using the Simulink software, see “Simulating Model
Output” on page 10-6.

Transforming Between Time- and Frequency-Domain Data

Transforming Between Time- and Frequency-Domain Data

In this section...

“Transforming Data Domain in the GUI” on page 2-121

“Transforming Data Domain at the Command Line” on page 2-128

Transforming Data Domain in the GUI

¢ “Transforming Time-Domain Data” on page 2-121
¢ “Transforming Frequency-Domain Data” on page 2-125
¢ “Transforming Frequency-Response Data” on page 2-126

® “See Also” on page 2-128

Transforming Time-Domain Data

In the System Identification Tool GUI, time-domain data has an icon with a
white background. You can transform time-domain data to frequency-domain
or frequency-response data. The frequency values of the resulting frequency

vector range from 0 to the Nyquist frequency fg = %s , where T is the
sampling interval.

Transforming from time-domain to frequency-response data is equivalent to
estimating a model from the data using the spafdr method.

2-121

2 Data Import and Processing

1 In the System Identification Tool GUI, drag the icon of the data you want to
transform to the Working Data rectangle, as shown in the following figure.

<) System Identification Tool - Untitled Hi=] E3

File Options ‘window Help

Ilmpcurt data ;I Ilmpcurt models d

* Operations l
?W |=:-- Preprocess _ﬂ

tolata

‘Wiorking Data

| Estimate ——= |

Data Views hadel Wiewws
Ta Ta
[Time plot Workspace || LTI Mewer [[T Moclel output [~ Transient resq
[~ Data spectra [~ Modde resids [~ Freguency resg
[~ Freguency function] \f\«x [T Zeras atd poles
=0 tolata . o
] Dise spectrumn
Trash validation Data r B

Drag and drop on another icon.

2-122

Transforming Between Time- and Frequency-Domain Data

2 In the Operations area, select <—-Preprocess > Transform data in the
drop-down menu to open the Transform Data dialog box.

<) System Identification Tool - Untitled Hi=] E3
File Options ‘window Help
Ilmpcurt data ;i Ilmpcurt models d
* Operations 1
[N |
tolata
=-- Preprocess
Zelect channels...
Zelect experiments ..
herge experiments...
Select range...
Remove means
Remove trends
Filter ...
Data Views Resample... Model Wieyes
. Trs M i :

[Time plot T Model output [~ Transient resq

[~ Data spectra | hodel resids [~ Freguency resg

[~ Freguency function] \f\«x [T Zeras atd poles

- tolata -
Ext Trash Validation Data HEE

2-123

2 Data Import and Processing

2-124

3 In the Transform to drop-down list, select one of the following:

® Frequency Function — Create a new idfrd object using the spafdr
method. Go to step 4.

<) Transform Data H=] E3

Transforim to: IFrequency Function j
Freguency Spacing ||inear j
Murmber of Freguencies |1 oo

Marme of new data tdataff

Transtorm Close | Helgp

® Frequency Domain Data — Create a new iddata object using the fft
method. Go to step 6.

4 In the Frequency Spacing list, select the spacing of the frequencies at
which the frequency function is estimated:

¢ linear — Uniform spacing of frequency values between the endpoints.

® logarithmic — Base-10 logarithmic spacing of frequency values
between the endpoints.

5 In the Number of Frequencies field, enter the number of frequency
values.

6 In the Name of new data field, type the name of the new data set. This
name must be unique in the Data Board.

7 Click Transform to add the new data set to the Data Board in the System
Identification Tool GUI.

8 Click Close to close the Transform Data dialog box.

Transforming Between Time- and Frequency-Domain Data

Transforming Frequency-Domain Data

In the System Identification Tool GUI, frequency-domain data has an icon
with a green background. You can transform frequency-domain data to
time-domain or frequency-response (frequency-function) data.

Transforming from time-domain or frequency-domain data to
frequency-response data is equivalent to estimating a nonparametric model of
the data using the spafdr method.

1 In the System Identification Tool GUI, drag the icon of the data you want
to transform to the Working Data rectangle.

2 Select <--Preprocess > Transform data.

3 In the Transform to list, select one of the following:

® Frequency Function — Create a new idfrd object using the spafdr
method. Go to step 4.

® Time Domain Data — Create a new iddata object using the ifft
(inverse fast Fourier transform) method. Go to step 6.

4 In the Frequency Spacing list, select the spacing of the frequencies at
which the frequency function is estimated:

¢ linear — Uniform spacing of frequency values between the endpoints.

® logarithmic — Base-10 logarithmic spacing of frequency values
between the endpoints.

5 In the Number of Frequencies field, enter the number of frequency
values.

6 In the Name of new data field, type the name of the new data set. This
name must be unique in the Data Board.

7 Click Transform to add the new data set to the Data Board in the System
Identification Tool GUI.

8 Click Close to close the Transform Data dialog box.

2-125

2 Data Import and Processing

2-126

Transforming Frequency-Response Data

In the System Identification Tool GUI, frequency-response data has an icon
with a yellow background. You can transform frequency-response data to
frequency-domain data (iddata object) or to frequency-response data with a
different frequency resolution.

When you select to transform single-input/single-output (SISO)
frequency-response data to frequency-domain data, the toolbox creates
outputs that equal the frequency responses, and inputs equal to 1. Therefore,
the ratio between the Fourier transform of the output and the Fourier
transform of the input is equal to the system frequency response.

For the multiple-input case, the toolbox transforms the frequency-response
data to frequency-domain data as if each input contributes independently to
the entire output of the system and then combines information. For example,
if a system has three inputs, u1, u2, and u3 and two frequency samples, the
input matrix is set to:

S O O = =
S O = = O O
= = O O O O

ri
]

In general, for nu inputs and ns samples (the number of frequencies), the
input matrix has nu columns and (ns- nu) rows.

Note To create a separate experiment for the response from each input,
see “Transforming Between Frequency-Domain and Frequency-Response
Data” on page 2-130.

When you transform frequency-response data by changing its frequency
resolution, you can modify the number of frequency values by changing
between linear or logarithmic spacing. You might specify variable frequency
spacing to increase the number of data points near the system resonance

Transforming Between Time- and Frequency-Domain Data

frequencies, and also make the frequency vector coarser in the region outside
the system dynamics. Typically, high-frequency noise dominates away

from frequencies where interesting system dynamics occur. The System
Identification Tool GUI lets you specify logarithmic frequency spacing, which
results in a variable frequency resolution.

Note The spafdr command lets you lets you specify any variable frequency
resolution.

1 In the System Identification Tool GUI, drag the icon of the data you want
to transform to the Working Data rectangle.

2 Select <--Preprocess > Transform data.

3 In the Transform to list, select one of the following:
® Frequency Domain Data — Create a new iddata object. Go to step 6.

® Frequency Function — Create a new idfrd object with different
resolution (number and spacing of frequencies) using the spafdr method.
Go to step 4.

4 In the Frequency Spacing list, select the spacing of the frequencies at
which the frequency function is estimated:

e linear — Uniform spacing of frequency values between the endpoints.

® logarithmic — Base-10 logarithmic spacing of frequency values
between the endpoints.

5 In the Number of Frequencies field, enter the number of frequency
values.

6 In the Name of new data field, type the name of the new data set. This
name must be unique in the Data Board.

7 Click Transform to add the new data set to the Data Board in the System
Identification Tool GUI.

8 Click Close to close the Transform Data dialog box.

2-127

2 Data Import and Processing

2-128

See Also

For a description of time-domain, frequency-domain, and frequency-response
data, see “Importing Data into the MATLAB Workspace” on page 2-7.

To learn how to transform data at the command line instead of the GUI, see
“Transforming Data Domain at the Command Line” on page 2-128.

Transforming Data Domain at the Command Line

® “Supported Data Transformations” on page 2-128

* “Transforming Between Time and Frequency Domain” on page 2-129

* “Transforming Between Frequency-Domain and Frequency-Response
Data” on page 2-130

® “See Also” on page 2-131

Supported Data Transformations

The following table shows the different ways you can transform data from one
data domain to another. If the transformation is supported for a given row
and column combination in the table, the method used by the software is
listed in the cell at their intersection.

Original Data
Format

To Time Domain
(iddata object)

To Frequency
Domain
(iddata object)

To Frequency
Function

(idfrd object)

Time Domain
(iddata object)

No.

Yes, using fft.

Yes, using etfe,
spa, or spafdr.

Frequency
Domain
(iddata object)

Yes, using ifft.

No.

Yes, using etfe,
spa, or spafdr.

Frequency
Function
(idfrd object)

Yes. Calculation
creates

frequency-domain
iddata object

Yes. Calculates
a frequency
function with
different

Transforming Between Time- and Frequency-Domain Data

Original Data
Format

To Time Domain
(iddata object)

To Frequency
Domain
(iddata object)

To Frequency
Function
(idfrd object)

object.

that has the
same ratio
between output
and input as the
original idfrd

resolution
(number and
spacing of
frequencies)
using spafdr.

Transforming Between Time and Frequency Domain

The iddata object stores time-domain or frequency-domain data. The
following table summarizes the commands for transforming data between
time and frequency domains.

Command Description Syntax Example

fft Transforms time-domain To transform time-domain
data to the frequency iddata object t_data to
domain. frequency-domain iddata
You can specify N, the ?]:2 eliir:c_da:c)?nlltﬁs':'
number of frequency 4 yp ’ ’
values. G e =

fft(t_data,N)
ifft Transforms To transform

frequency-domain data

to the time domain.
Frequencies are linear and
equally spaced.

frequency-domainiddata
object f_data to
time-domain iddata
object t_data, use:

t_data =
ifft(f_data)

2-129

2 Data Import and Processing

2-130

Transforming Between Frequency-Domain and
Frequency-Response Data

You can transform frequency-response data to frequency-domain data
(iddata object). The idfrd object represents complex frequency-response of
the system at different frequencies. For a description of this type of data, see
“Importing Frequency-Response Data into MATLAB” on page 2-11.

When you select to transform single-input/single-output (SISO)
frequency-response data to frequency-domain data, the toolbox creates
outputs that equal the frequency responses, and inputs equal to 1. Therefore,
the ratio between the Fourier transform of the output and the Fourier
transform of the input is equal to the system frequency response.

For information about changing the frequency resolution of frequency-response
data to a new constant or variable (frequency-dependent) resolution, see the
spafdr reference page. You might use this advanced feature to increase the
number of data points near the system resonance frequencies and make the
frequency vector coarser in the region outside the system dynamics. Typically,
high-frequency noise dominates away from frequencies where interesting
system dynamics occur.

Note You cannot transform an idfrd object to a time-domain iddata object.

To transform an idfrd object with the name idfrdobj to a frequency-domain
iddata object, use the following syntax:

dataf = iddata(idfrdobj)

The resulting frequency-domain iddata object contains values at the same
frequencies as the original idfrd object.

For the multiple-input case, the toolbox represents frequency-response data
as if each input contributes independently to the entire output of the system
and then combines information. For example, if a system has three inputs,
ul, u2, and u3 and two frequency samples, the input matrix is set to:

Transforming Between Time- and Frequency-Domain Data

SO O O = =
== O O O O

S O H H O O

In general, for nu inputs and ns samples, the input matrix has nu columns
and (ns- nu) rows.

If you have ny outputs, the transformation operation produces an output
matrix has ny columns and (ns- nu) rows using the values in the complex
frequency response G(iw) matrix (ny-by-nu-by-ns). In this example, y1 is
determined by unfolding G(1,1,:), G(1,2,:), and G(1,3,:) into three

column vectors and vertically concatenating these vectors into a single column.

Similarly, y2 is determined by unfolding G(2,1,:), G(2,2,:),and G(2,3,:)
into three column vectors and vertically concatenating these vectors.

If you are working with multiple inputs, you also have the option of
storing the contribution by each input as an independent experiment in a
multiexperiment data set. To transform an idfrd object with the name
idfrdobj to a multiexperiment data set datf, where each experiment
corresponds to each of the inputs in idfrdobj

datf = iddata(idfrdobj, 'me')

In this example, the additional argument 'me' specifies that multiple
experiments are created.

By default, transformation from frequency-response to frequency-domain
data strips away frequencies where the response is inf or NaN. To preserve
the entire frequency vector, use datf = iddata(idfrdobj,'inf'). For more
information, type help idfrd/iddata.

See Also

Transforming from time-domain or frequency-domain data to
frequency-response data is equivalent to creating a frequency-response model

2-131

2 Data Import and Processing

from the data. For more information, see “Identifying Frequency-Response
Models” on page 3-2.

2-132

Manipulating Complex-Valued Data

Manipulating Complex-Valued Data

In this section...

“Supported Operations for Complex Data” on page 2-133

“Processing Complex iddata Signals at the Command Line” on page 2-133

Supported Operations for Complex Data

System Identification Toolbox estimation algorithms support complex data.
For example, the following estimation commands estimate complex models
from complex data: ar, armax, arx, bj, covf, ivar, iv4, oe, pem, spa, and
n4sid.

Model transformation routines, such as freqresp and zpkdata, work for
complex-valued models. However, they do not provide pole-zero confidence
regions. For complex models, the parameter variance-covariance information
refers to the complex-valued parameters and the accuracy of the real and
imaginary is not computed separately.

The display commands compare and plot also work with complex-valued
data and models, but only show the absolute values of the signals. To plot
the real and imaginary parts of the data separately, use plot(real(data))
and plot(imag(data)), respectively.

Processing Complex iddata Signals at the Command
Line

If the iddata object data contains complex values, you can use the following
commands to process the complex data and create a new iddata object.

Command Description

abs(data) Absolute value of complex signals in iddata object.

angle(data) Phase angle (in radians) of each complex signals in
iddata object.

2-133

2 Data Import and Processing

Command

Description

complex(data)

For time-domain data, this command makes the iddata
object complex—even when the imaginary parts are
zero. For frequency-domain data that only stores

the values for nonnegative frequencies, such that
realdata(data)=1, it adds signal values for negative
frequencies using complex conjugation.

imag(data)

Selects the imaginary parts of each signal in iddata
object.

isreal(data)

1 when data (time-domain or frequency-domain)
contains only real input and output signals, and returns
0 when data (time-domain or frequency-domain)
contains complex signals.

real(data)

Real part of complex signals in iddata object.

realdata(data)

Returns a value of 1 when data is a real-valued,
time-domain signal, and returns 0 otherwise.

For example, suppose that you create a frequency-domain iddata object Datf
by applying fft to a real-valued time-domain signal to take the Fourier
transform of the signal. The following is true for Datf:

isreal(Datf)

realdata(Datf

2-134

0
= 1

Linear Model Identification

¢ “Identifying Frequency-Response Models” on page 3-2

¢ “Identifying Impulse-Response Models” on page 3-11

¢ “Identifying Low-Order Transfer Functions (Process Models)” on page 3-20
¢ “Identifying Input-Output Polynomial Models” on page 3-39

¢ “Identifying State-Space Models” on page 3-73

¢ “Refining Linear Parametric Models” on page 3-104

¢ “Extracting Parameter Values from Linear Models” on page 3-109

e “Extracting Dynamic Model and Noise Model Separately” on page 3-111

* “Transforming Between Discrete-Time and Continuous-Time
Representations” on page 3-113

¢ “Transforming Between Linear Model Representations” on page 3-118
¢ “Subreferencing Model Objects” on page 3-120

¢ “Concatenating Model Objects” on page 3-125

o “Merging Model Objects” on page 3-129

3 Linear Model Identification

3-2

Identifying Frequency-Response Models

In this section...

“What Is a Frequency-Response Model?” on page 3-2
“Data Supported by Frequency-Response Models” on page 3-3
“How to Estimate Frequency-Response Models in the GUI” on page 3-3

“How to Estimate Frequency-Response Models at the Command Line” on
page 3-5

“Options for Computing Spectral Models” on page 3-5
“Options for Frequency Resolution” on page 3-6

“Spectrum Normalization” on page 3-8

What Is a Frequency-Response Model?

You can estimate frequency-response models and visualize the responses on
a Bode plot, which shows the amplitude change and the phase shift as a
function of the sinusoid frequency.

The frequency-response function describes the steady-state response of a
system to sinusoidal inputs. For a linear system, a sinusoidal input of a
specific frequency results in an output that is also a sinusoid with the same
frequency, but with a different amplitude and phase. The frequency-response
function describes the amplitude change and phase shift as a function of
frequency.

For a discrete-time system sampled with a time interval 7, the
frequency-response model G(z) relates the Z-transforms of the input U(z)
and output Y(2z):

Y(2) =G(2)U(2)

In other words, the frequency-response function, G(e®?), is the Laplace
transform of the impulse response that is evaluated on the imaginary axis.
The frequency-response function is the transfer function G(z) evaluated on
the unit circle.

Identifying Frequency-Response Models

Data Supported by Frequency-Response Models

You can estimate spectral analysis models from data with the following
characteristics:

e Complex or real data.

® Time- or frequency-domain iddata or idfrd data object. To learn
more about estimating time-series models, see Chapter 6, “Time Series
Identification”.

® Single- or multiple-output data.

How to Estimate Frequency-Response Models in the
GUI

You must have already imported your data into the GUI and performed any
necessary preprocessing operations. For more information, see Chapter 2,
“Data Import and Processing”.

To estimate frequency-response models in the System Identification Tool GUI:

1 In the System Identification Tool GUI, select Estimate > Spectral
models to open the Spectral Model dialog box.

2 In the Method list, select the spectral analysis method you want to use.
For information about each method, see “Options for Computing Spectral
Models” on page 3-5.

3 Specify the frequencies at which to compute the spectral model in one of
the following ways:

¢ In the Frequencies field, enter either a vector of values, a MATLAB
expression that evaluates to a vector, or a variable name of a vector in
the MATLAB workspace. For example, logspace(-1,2,500).

¢ Use the combination of Frequency Spacing and Frequencies to
construct the frequency vector of values:

= In the Frequency Spacing list, select Linear or Logarithmic
frequency spacing.

3 Linear Model Identification

3-4

Note For etfe, only the Linear option is available.

= In the Frequencies field, enter the number of frequency points.

For time-domain data, the frequency ranges from 0 to the Nyquist
frequency. For frequency-domain data, the frequency ranges from the
smallest to the largest frequency in the data set.

4 In the Frequency Resolution field, enter the frequency resolution, as
described in “Options for Frequency Resolution” on page 3-6. To use the
default value, enter default or, equivalently, the empty matrix [].

5 In the Model Name field, enter the name of the correlation analysis model.
The model name should be unique in the Model Board.

6 Click Estimate to add this model to the Model Board in the System
Identification Tool GUI.

7 In the Spectral Model dialog box, click Close.

8 To view the frequency-response plot, select the Frequency resp check box
in the System Identification Tool GUI. For more information about working
with this plot, see “Frequency Response Plots” on page 8-37.

9 To view the estimated disturbance spectrum, select the Noise spectrum
check box in the System Identification Tool GUI. For more information
about working with this plot, see “Noise Spectrum Plots” on page 8-45.

10 After estimating the model, see Chapter 8, “Model Analysis”, to validate
the model.

To export the model to the MATLAB workspace, drag it to the To Workspace
rectangle in the System Identification Tool GUIL You can retrieve the
responses from the resulting idfrd model object using the bode or nyquist
command.

Identifying Frequency-Response Models

How to Estimate Frequency-Response Models at the
Command Line

You can use the etfe, spa, and spafdr commands to estimate spectral
models. The following table provides a brief description of each command
and usage examples.

The resulting models are stored as idfrd model objects. For detailed
information about the commands and their arguments, see the corresponding

reference page.

Commands for Frequency Response

Command | Description Usage

etfe Estimates an empirical | To estimate a model m, use the following syntax:
transfer function using
Fourier analysis. m=etfe (data)

spa Estimates a frequency To estimate a model m, use the following syntax:
response with a fixed
frequency resolution m=spa(data)
using spectral analysis.

spafdr Estimates a frequency To estimate a model m, use the following syntax:
response with a variable
frequency resolution m=spafdr(data,R,w)

using spectral analysis.
where R is the resolution vector and w is the frequency
vector.

After estimating the model, see Chapter 8, “Model Analysis” to validate the
model.

Options for Computing Spectral Models

This section describes how to select the method for computing spectral models
in the estimation procedures “How to Estimate Frequency-Response Models
in the GUI” on page 3-3 and “How to Estimate Frequency-Response Models
at the Command Line” on page 3-5.

3 Linear Model Identification

3-6

You can choose from the following three spectral-analysis methods:

¢ etfe (Empirical Transfer Function Estimate)

For input-output data. This method computes the ratio of the Fourier
transform of the output to the Fourier transform of the input.

For time-series data. This method computes a periodogram as the
normalized absolute squares of the Fourier transform of the time series.

ETFE works well for highly resonant systems or narrowband systems.
The drawback of this method is that it requires linearly spaced frequency
values, does not estimate the disturbance spectrum, and does not provide
confidence intervals. ETFE also works well for periodic inputs and
computes exact estimates at multiples of the fundamental frequency of the
input and their ratio.

® spa (SPectral Analysis)

This method is the Blackman-Tukey spectral analysis method, where
windowed versions of the covariance functions are Fourier transformed.

e spafdr (SPectral Analysis with Frequency Dependent Resolution)

This method is a variant of the Blackman-Tukey spectral analysis method
with frequency-dependent resolution. First, the algorithm computes
Fourier transforms of the inputs and outputs. Next, the products of the
transformed inputs and outputs with the conjugate input transform are
smoothed over local frequency regions. The widths of the local frequency
regions can vary as a function of frequency. The ratio of these averages
computes the frequency-response estimate.

Options for Frequency Resolution

* “What Is Frequency Resolution?” on page 3-7

¢ “Frequency Resolution for etfe and spa” on page 3-7

¢ “Frequency Resolution for spafdr” on page 3-7

e “etfe Frequency Resolution for Periodic Input” on page 3-8

This section supports the estimation procedures “How to Estimate

Frequency-Response Models in the GUI” on page 3-3 and “How to Estimate
Frequency-Response Models at the Command Line” on page 3-5.

Identifying Frequency-Response Models

What Is Frequency Resolution?

Frequency resolution is the size of the smallest frequency for which details
in the frequency response and the spectrum can be resolved by the estimate.
A resolution of 0.1 rad/s means that the frequency response variations at
frequency intervals at or below 0.1 rad/s are not resolved.

Note Finer resolution results in greater uncertainty in the model estimate.

Specifying the frequency resolution for etfe and spa is different than for
spafdr.

Frequency Resolution for etfe and spa

For etfe and spa, the frequency resolution is approximately equal to the
following value:

2n radians
M | sampling interval

M is a scalar integer that sets the size of the lag window. The value of M
controls the trade-off between bias and variance in the spectral estimate.

The default value of M for spa is good for systems without sharp resonances.
For etfe, the default value of M gives the maximum resolution.

A large value of M gives good resolution, but results in more uncertain
estimates. If a true frequency function has sharp peak, you should specify
higher M values.

Frequency Resolution for spafdr

In case of etfe and spa, the frequency response is defined over a uniform
frequency range, 0-F,/2 radians per second, where F is the sampling
frequency—equal to twice the Nyquist frequency. In contrast, spafdr lets
you increase the resolution in a specific frequency range, such as near a
resonance frequency. Conversely, you can make the frequency grid coarser in
the region where the noise dominates—at higher frequencies, for example.

3-7

3 Linear Model Identification

3-8

Such customizing of the frequency grid assists in the estimation process by
achieving high fidelity in the frequency range of interest.

For spafdr, the frequency resolution around the frequency k is the value R(k).
You can enter R(k) in any one of the following ways:

e Scalar value of the constant frequency resolution value in radians per
second.

Note The scalar R is inversely related to the M value used for etfe and
spa.

® Vector of frequency values the same size as the frequency vector.

* Expression using MATLAB workspace variables and evaluates to a
resolution vector that is the same size as the frequency vector.

The default value of the resolution for spafdr is twice the difference between
neighboring frequencies in the frequency vector.

etfe Frequency Resolution for Periodic Input
If the input data is marked as periodic and contains an integer number of
periods (data.Period is an integer), etfe computes the frequency response at

2nk(__k = i
frequencies T (Period) where £ =1,2,..., Period .

For periodic data, the frequency resolution is ignored.

Spectrum Normalization

The spectrum of a signal is the square of the Fourier transform of the
signal. The spectral estimate using the commands spa, spafdr, and etfe is
normalized by the sampling interval T:

M .
o (=T Y R,(kT)e"TWy (k)
k=—M

Identifying Frequency-Response Models

where W, (k) is the lag window, and M is the width of the lag window. The
output covariance Ry(kT) 1s given by the following discrete representation:

. 1Y
Ry (kT) = ; y(T - kT)y(T)

Because there is no scaling in a discrete Fourier transform of a vector, the
purpose of T'is to relate the discrete transform of a vector to the physically
meaningful transform of the measured signal. This normalization sets the

units of @, (w) as power per radians per unit time, and makes the frequency
units radians per unit time.

The scaling factor of T is necessary to preserve the energy density of the
spectrum after interpolation or decimation.

By Parseval’s theorem, the average energy of the signal must equal the
average energy in the estimated spectrum, as follows:

2 _ i n/T
By 0= [@y @do
S1= Ey%()
1 ¢n/T
S2= 2—n'[_n/TfI)y(m)do)

To compare the left side of the equation (S1) to the right side (S2), enter the
following commands in the MATLAB Command Window:

load iddatat

% Create time-series iddata object

= z1(:,1,[1);

Define sample interval from the data

= vy.Ts;

Estimate frequency response

sp = spa(y);

% Remove spurious dimensions

phiy = squeeze(sp.spec);

% Compute average energy from the estimated

X <

-

o°

3 Linear Model Identification

3-10

% energy spectrum, where S1 is scaled by T
S1 = sum(phiy)/length(phiy)/T

% Compute average energy of the signal

S2 = sum(y.y."2)/size(y,1)

In this code, phiy contains <I)y(0)) between w=0 and o= %‘ with the
frequency step given as follows:

T
(T -length(phiy) J
MATLAB computes the following values for S1 and S2:
s1 =

19.2076
S2 =

19.4646

Thus, the average energy of the signal approximately equals the average
energy in the estimated spectrum.

Identifying Impulse-Response Models

Identifying Impulse-Response Models

In this section...

“What Is Time-Domain Correlation Analysis?” on page 3-11
“Data Supported by Correlation Analysis” on page 3-12

“How to Estimate Impulse and Step Response Models Using the GUI” on
page 3-12

“How to Estimate Impulse and Step Response Models at the Command
Line” on page 3-14

“How to Compute Response Values” on page 3-15

“How to Identify Delay Using Transient-Response Plots” on page 3-16

“Algorithm for Correlation Analysis” on page 3-18

What Is Time-Domain Correlation Analysis?

Time-domain correlation analysis is a nonparametric estimate of transient
response of dynamic systems, which computes a finite impulse response (FIR)
model from the data. Correlation analysis assumes a linear system and does
not require a specific model structure.

There are two types of transient response for a dynamic model:

® Impulse response

Impulse response is the output signal that results when the input is an
impulse and has the following definition for a discrete model:

ut)=0 ¢>0
u@®)=1 ¢=0

® Step response

3-11

3 Linear Model Identification

3-12

Step response is the output signal that results from a step input, defined as
follows:

u(t)=0 t<0
ul®) =1 t=>0

The response to an input u(t) is equal to the convolution of the impulse
response, as follows:

¥ = [h(t-2) ul2)dz

Data Supported by Correlation Analysis

You can estimate correlation analysis models from data with the following
characteristics:

® Real or complex time-domain iddata object. To learn about estimating
time-series models, see Chapter 6, “Time Series Identification”.

® Frequency-domain iddata or idfrd object with the sampling interval T#0.

¢ Single- or multiple-output data.

How to Estimate Impulse and Step Response Models
Using the GUI

Before you can perform this task, you must have

e Regularly sampled data imported into the System Identification Tool
GUI. See “Importing Time-Domain Data into the GUI” on page 2-16. For
supported data formats, see “Data Supported by Correlation Analysis”
on page 3-12.

® Performed any required data preprocessing operations. To improve the
accuracy of your model, you should detrend your data. See “Ways to
Process Data for System Identification” on page 2-4.

To estimate in the System Identification Tool GUI using time-domain
correlation analysis:

Identifying Impulse-Response Models

1 In the System Identification Tool GUI, select Estimate > Correlation
models to open the Correlation Model dialog box.

2 In the Time span (s) field, specify a scalar value as the time interval over
which the impulse or step response is calculated. For a scalar time span 7T,
the resulting response is plotted from -7/4 to T.

Tip You can also enter a 2-D vector in the format [min_value max_value].

3 In the Order of whitening filter field, specify the filter order.

The prewhitening filter is determined by modeling the input as an
Auto-Regressive (AR) process of order N. The algorithm applies a filter of
the form A(qQ)u(t)=u_F\(t). That is, the input u(?) is subjected to an FIR
filter A to produce the filtered signal u_F(t). Prewhitening the input by
applying a whitening filter before estimation might improve the quality of
the estimated impulse response g.

The order of the prewhitening filter, N, is the order of the A filter. N equals
the number of lags. The default value of N is 10, which you can also specify
as [].

4 In the Model Name field, enter the name of the correlation analysis model.
The name of the model should be unique in the Model Board.

5 Click Estimate to add this model to the Model Board in the System
Identification Tool GUI.

6 In the Correlation Model dialog box, click Close.

Next Steps

¢ Export the model to the MATLAB workspace for further analysis by
dragging it to the To Workspace rectangle in the System Identification
Tool GUL

® View the transient response plot by selecting the Transient resp check
box in the System Identification Tool GUI. For more information about

3-13

3 Linear Model Identification

3-14

working with this plot and selecting to view impulse- versus step-response,
see “Impulse and Step Response Plots” on page 8-29.

How to Estimate Impulse and Step Response Models
at the Command Line

Before you can perform this task, you must have

® Regularly sampled data. See “Representing Time- and Frequency-Domain
Data Using iddata Objects” on page 2-49. For supported data formats, see
“Data Supported by Correlation Analysis” on page 3-12.

¢ Performed any required data preprocessing operations. Ro improve the
accuracy of your model, you should detrend your data. See “Ways to
Process Data for System Identification” on page 2-4.

The following tables summarize the commands for computing impulse- and
step-response models. Both impulse and step produce the same FIR model,
but generate different plots. The resulting models are stored as idarx model
objects and contain impulse-response coefficients in the model parameter

B. For detailed information about these commands, see the corresponding
reference page.

Note cra is an alternative method for computing impulse response from
time-domain data only.

Commands for Impulse and Step Response

Command Description Example
impulse Estimates a high-order, To estimate the model m and plot the impulse
noncausal FIR model response, use the following syntax:

using correlation analysis.
m=impulse(data,Time, 'pw',N)

where data is a single- or multiple-output
time-domain iddata object, and Time is a
scalar value representing the time interval

Identifying Impulse-Response Models

Commands for Impulse and Step Response (Continued)

Command

Description Example

over which the impulse or step response is
calculated. For a scalar time span T, the
resulting response is plotted from -7/4 to T.
'pw' and N is an option property-value pair
that specifies the order N of the prewhitening
filter 'pw'.

step

Estimates a high-order, To estimate the model m and plot the step
noncausal FIR model response, use the following syntax:

correlation analysis.
step(data,Time)

where data is a single- or multiple-output
time-domain iddata object, and Time is the

time span.

Next Steps

¢ Perform model analysis. See “Overview of Model Validation and Plots”
on page 8-2.

How to Compute Response Values

You can use impulse and step commands with output arguments to get
the numerical impulse- and step-response vectors as a function of time,
respectively.

To get the numerical response values:

1 Compute the FIR model by applying either impulse or step commands on
the data, as described in “How to Estimate Impulse and Step Response
Models at the Command Line” on page 3-14.

2 Apply the following syntax on the resulting model:

% To compute impulse-response data
[y,t,ysd] = impulse(model)

3-15

3 Linear Model Identification

3-16

% To compute step-response data
[y,t,ysd] = step(model)

where y is the response data, t is the time vector, and ysd is the standard
deviations of the response.

How to Identify Delay Using Transient-Response Plots

You can use transient-response plots to estimate the input delay, or dead
time, of linear systems. Input delay represents the time it takes for the output
to respond to the input.

In the System Identification Tool GUI. To view the transient response
plot, select the Transient resp check box in the System Identification Tool
GUI. For example, the following step response plot shows a time delay of
about 0.25 s before the system responds to the input.

=} Transient Response: power-=t e = |EI|5|
File Options Stwvle Channel Help
Step Response
1 T r T T
0.a 4
0.6 4
0.4 / J
i
0.2 },‘ 4
al]
Dz L 1 L L
-1 a 1 2 3 4
Time
Ma transient responze far SPA model.

Step Response Plot

At the command line. You can use the impulse command to plot the
impulse response. The time delay is equal to the first positive peak in the

Identifying Impulse-Response Models

transient response magnitude that is greater than the confidence region for
positive time values.

For example, the following commands create an impulse-response plot with a
1-standard-deviation confidence region:

% Load sample data

load dry2

% Split data into estimation and
% validation data sets

ze = dry2(1:500);

zr = dry2(501:1000);
impulse(ze,'sd',1,'fill")

The resulting figure shows that the first positive peak of the response
magnitude, which is greater than the confidence region for positive time
values, occurs at 0.24 s.

3-17

3 Linear Model Identification

3-18

<) Figure 2 _ (O] x]

File Edit “iew Insert Tools Desktop ‘Window Help |
DS K RaM®|(E 08 8O

Frorm “altage
18 T T T T T T T

Tao Ternperature

Algorithm for Correlation Analysis

To better understand the algorithm underlying correlation analysis, consider
the following description of a dynamic system:

y(@) = G(@Qu(t) + v(t)

where u(t) and y(t) are the input and output signals, respectively. v(2) is the
additive noise term. G(q) is the transfer function of the system. The G(q)u(t)
notation represents the following operation:

=

G(@u(®) =Y gkt~ k)
k=1

Identifying Impulse-Response Models

q 1s the shift operator, defined by the following equation:

oo

Gg)=Y ghg™® ¢ lu®)=ut-1)
k=1

For impulse response, the algorithm estimates impulse response coefficients
g for both the single- and multiple-output data. The impulse response is
estimated as a high-order, noncausal FIR model:

y(t) = gmult + m) + ...+ g(=Dult + 1) + g(0)u(t)
+gu -1 +...+ gnult—n)

The estimation algorithm prefilters the data such that the input is as white
as possible. It then computes the correlations from the prefiltered data to
obtain the FIR coefficients.

g is also estimated for negative lags, which takes into account any noncausal
effects from input to output. Noncausal effects can result from feedback. The
coefficients are computed using the least-squares method.

For a multiple-input or multiple-output system, the impulse response g, is an
ny-by-nu matrix, where ny is the number of outputs and nu is the number

of inputs. The i-jth element of the impulse response matrix describes the
behavior of the ith output after an impulse in the jth input.

3-19

3 Linear Model Identification

3-20

Identifying Low-Order Transfer Functions (Process Models)

In this section...

“What Is a Process Model?” on page 3-20

“Data Supported by a Process Model” on page 3-21

“How to Estimate Process Models Using the GUI” on page 3-21

“How to Estimate Process Models at the Command Line” on page 3-27
“Options for Specifying the Process-Model Structure” on page 3-33
“Options for Multiple-Input Models” on page 3-34

“Options for the Disturbance Model Structure” on page 3-35

“Options for Frequency-Weighing Focus” on page 3-36

“Options for Initial States” on page 3-37

What Is a Process Model?

The structure of a continuous-time process model is a simple transfer function
that describes linear system dynamics in terms of one or more of the following
elements:

* Static gain K.
® One or more time constants Tpk. For complex poles, the time constant is

called T,,—equal to the inverse of the natural frequency—and the damping

coefficient is { (zeta).
¢ Process zero T..

¢ Possible time delay T, before the system output responds to the input
(dead time).

¢ Possible enforced integration.

Process models are popular for describing system dynamics in many
industries and apply to various production environments. The primary
advantages of these models are that they provide delay estimation, and the
model coefficients have a physical interpretation.

Identifying Low-Order Transfer Functions (Process Models)

You can create different model structures by varying the number of poles,
adding an integrator, or adding or removing a time delay or a zero. You can
specify a first-, second-, or third-order model, and the poles can be real or
complex (underdamped modes).

Note Continuous-time process models let you estimate the input delay.

For example, the following model structure is a first-order continuous-time
process model, where K is the static gain, Tp ;is a time constant, and 7, is the
input-to-output delay:

G(s) = _K e 5T
1+ STpl

To learn more about estimating continuous-time process models in the GUI,
see “Tutorial — Identifying Low-Order Transfer Functions (Process Models)
Using the GUI” in System Identification Toolbox Getting Started Guide.

Data Supported by a Process Model

You can estimate low-order (up to third order), continuous-time transfer
functions from data with the following characteristics:

® Regularly sampled time- or frequency-domain iddata or idfrd data object
® Real data, or complex data in the time domain only

® Single-output data

You must import your data into the MATLAB workspace, as described in
Chapter 2, “Data Import and Processing”.

How to Estimate Process Models Using the GUI

Before you can perform this task, you must have

3-21

3 Linear Model Identification

® Imported data into the System Identification Tool GUI. See “Importing
Time-Domain Data into the GUI” on page 2-16. For supported data
formats, see “Data Supported by a Process Model” on page 3-21.

® Performed any required data preprocessing operations. If you need to
model nonzero offsets, such as when model contains integration behavior,
do not detrend your data. In other cases, to improve the accuracy of your
model, you should detrend your data. See “Ways to Process Data for
System Identification” on page 2-4.

1 In the System Identification Tool GUI, select Estimate > Process models
to open the Process Models dialog box.

=10l

Maodel Transter Furction Pararneter Knowwh Walue Initisl Guess Bounds
K - | | auto | [infinf]
el L i [ate [0t
(1+Tpl 5) r I | o | 19001 Inf)
ST I | o | 19001 Inf)
Foles A T [[0 [mimn
[zl jreal [~ T [a0 [man
Initial Guess
[~ Zero
v Auto-selected
[Delay
~ From existing model: I
[Integratar g
{~ User-defined Yalue--=Initial Guessl

Dizturbance Madel: INl:unE = I Initial state: suto e
Focus: ISimuIation = I Covariance: IEstimate = I Options... |

fteration Fit: Improverment [~ Trace Stop terations |

Mane: D Estitnate | Cloze | Help |

2 If your model contains multiple inputs, select the input channel in the
Input list. This list only appears when you have multiple inputs. For more
information, see “Options for Multiple-Input Models” on page 3-34.

3-22

Identifying Low-Order Transfer Functions (Process Models)

3 In the Model Transfer Function area, specify the model structure using
the following options:

¢ Under Poles, select the number of poles, and then select ALl real or
Underdamped.

Note You need at least two poles to allow underdamped modes
(complex-conjugate pair).

e Select the Zero check box to include a zero, which i1s a numerator term
other than a constant, or clear the check box to exclude the zero.

e Select the Delay check box to include a delay, or clear the check box
to exclude the delay.

® Select the Integrator check box to include an integrator (self-regulating
process), or clear the check box to exclude the integrator.

The Parameter area shows as many active parameters as you included in
the model structure.

Note By default, the model Name is set to the acronym that reflects the
model structure, as described in “Options for Specifying the Process-Model
Structure” on page 3-33.

4 In the Initial Guess area, select Auto-selected to calculate the initial
parameter values for the estimation. The Initial Guess column in the

3-23

3 Linear Model Identification

Parameter table displays Auto. If you do not have a good guess for the
parameter values, Auto works better than entering an ad hoc value.

Farameter Knowr Walue Initial Guess Boundz
= | | auto | [nf In]
(N | | | auto | [0.001 Inf]
ista = | | auto | [0.001 Inf]
v - | o | o | [0.001 Inf]
el e | o | o | Finting
=B | | auto | 1030
Initial Guess

{* Auto-selected

" Fram existing model:

" U=ser-defined Salue--=Initial Guess

5 (Optional) If you approximately know a parameter value, enter this value
in the Initial Guess column of the Parameter table. The estimation
algorithm uses this value as a starting point. If you know a parameter
value exactly, enter this value in the Initial Guess column, and also select
the corresponding Known check box in the table to fix its value.

If you know the range of possible values for a parameter, enter these values
into the corresponding Bounds field to help the estimation algorithm.

For example, the following figure shows that the delay value Td is fixed
at 2 s and is not estimated.

3-24

Identifying Low-Order Transfer Functions (Process Models)

Paratneter Knowh Walue Initial Guess Bounds
| | | st | [Int inf]
A | | Auto | [0.001 Inf]
Ista [~ | | Auto | [0.001 Inf]
TRa = | o | o | [0.001 Inf]
Z = | o | o | [inf]
LB v N i | (@30
Initial Guess
" Auto-zelected
™ From existing model: I
= User-defined YYalue--=Initial Guess

6 In the Disturbance Model list, select one of the available options. For
more information about each option, see “Options for the Disturbance
Model Structure” on page 3-35.

7 In the Focus list, select how to weigh the relative importance of the fit at
different frequencies. For more information about each option, see “Options
for Frequency-Weighing Focus” on page 3-36.

8 In the Initial state list, specify how you want the algorithm to treat initial
states. For more information about the available options, see “Options for
Initial States” on page 3-37.

Tip If you get a bad fit, you might try setting a specific method for handling
initial states, rather than choosing it automatically.

9 In the Covariance list, select Estimate if you want the algorithm to
compute parameter uncertainties. Effects of such uncertainties are
displayed on plots as model confidence regions.

3-25

3 Linear Model Identification

To omit estimating uncertainty, select None. Skipping uncertainty
computation might reduce computation time for complex models and large
data sets.

10 In the Model Name field, edit the name of the model or keep the default.
The name of the model should be unique in the Model Board.

11 To view the estimation progress in the MATLAB Command Window, select
the Trace check box. During estimation, the following information is
displayed for each iteration:

¢ Loss function — Equals the determinant of the estimated covariance
matrix of the input noise.

® Parameter values — Values of the model structure coefficients you
specified.

¢ Search direction — Change in parameter values from the previous
iteration.

¢ Fit improvements — Shows the actual versus expected improvements in
the fit.

12 Click Estimate to add this model to the Model Board in the System
Identification Tool GUI.

13 To stop the search and save the results after the current iteration has been
completed, click Stop Iterations. To continue iterations from the current
model, click the Continue iter button to assign current parameter values
as initial guesses for the next search.

Next Steps

e Validate the model by selecting the appropriate check box in the Model
Views area of the System Identification Tool GUI. For more information
about validating models, see “Overview of Model Validation and Plots”
on page 8-2.

® Refine the model by clicking the Value —> Initial Guess button to assign
current parameter values as initial guesses for the next search, edit the
Model Name field, and click Estimate.

3-26

Identifying Low-Order Transfer Functions (Process Models)

¢ Export the model to the MATLAB workspace for further analysis by
dragging it to the To Workspace rectangle in the System Identification
Tool GUI.

How to Estimate Process Models at the Command
Line

* “Prerequisites” on page 3-27
e “Using pem to Estimate Process Models” on page 3-27

¢ “Example — Estimating Process Models with Free Parameters at the
Command Line” on page 3-29

¢ “Example — Estimating Process Models with Fixed Parameters at the
Command Line” on page 3-30

Prerequisites
Before you can perform this task, you must have

® Regularly sampled data as an iddata object. See “Representing Time- and
Frequency-Domain Data Using iddata Objects” on page 2-49. For supported
data formats, see “Data Supported by a Process Model” on page 3-21.

¢ Performed any required data preprocessing operations. If you need to
model nonzero offsets, such as when model contains integration behavior,
do not detrend your data. In other cases, to improve the accuracy of your
model, you should detrend your data. See “Ways to Process Data for
System Identification” on page 2-4.

Using pem to Estimate Process Models

You can estimate process models using the iterative estimation method pem
that minimizes the prediction errors to obtain maximum likelihood estimates.
The resulting models are stored as idproc model objects.

You can use the following general syntax to both configure and estimate
process models:

m = pem(data,mod_struc, 'Property1',vValuel,...,
"PropertyN',ValueN)

3-27

3 Linear Model Identification

3-28

To capture offsets that are essential to describe the dynamics of interest,
such as when the model contains integration behavior, set the InputLevel
property set to “estimate”.

data is the estimation data and mod_struc is a string that represents
the process model structure, as described in “Options for Specifying the
Process-Model Structure” on page 3-33.

Tip You do not need to construct the model object using idproc before
estimation unless you want to specify initial parameter guesses or fixed
parameter values, as described in “Example — Estimating Process Models
with Fixed Parameters at the Command Line” on page 3-30.

The property-value pairs specify any model properties that configure the
estimation algorithm and the initial conditions. For more information about
accessing and setting model properties, see “Model Properties” on page 1-17.

Note You can specify all property-value pairs in pem as a simple,
comma-separated list without worrying about the hierarchy of these
properties in the idproc model object.

For more information about validating a process model, see “Overview of
Model Validation and Plots” on page 8-2.

You can use pem to refine parameter estimates of an existing process model,
as described in “Refining Linear Parametric Models” on page 3-104.

For detailed information about pem and idproc, see the corresponding
reference page.

Identifying Low-Order Transfer Functions (Process Models)

Example - Estimating Process Models with Free Parameters
at the Command Line

This example demonstrates how to estimate the parameters of a first-order
process model:

G(s) = _K e 5T
1+ STpl

This process has two inputs and the response from each input is estimated by
a first-order process model. All parameters are free to vary.

Use the following commands to estimate a model m from sample data:

% Load sample data

load co2data

% Sampling interval is 0.5 min (known)

Ts = 0.5;

% Split data set into estimation data ze

% and validation data zv

ze = iddata(Output_expi1,Input_expl1,Ts,...
'"TimeUnit', 'min');

zv = iddata(Output_exp2,Input_exp2,Ts,...
'"TimeUnit', 'min');

% Estimate model with one pole and a delay

m = pem(ze,'P1D")

3-29

3 Linear Model Identification

3-30

MATLAB computes the following output:

Process model with 2 inputs:
y = G_1(s)u_1 + G_2(s)u_2

where
K
G_1(s) = ---------- * exp(-Td*s)
1+Tp1*s
with K= -3.2168
Tp1 = 23.033
Td = 10.101
K
G_2(s) = ---------- * exp(-Td*s)
1+Tp1*s
with K = 9.9877
Tp1 = 2.0314
Td = 4.8368

Use dot notation to get the value of any model parameter. For example, to get
the Value field in the K structure, type the following command:

m.K.value

Example - Estimating Process Models with Fixed Parameters
at the Command Line

When you know the values of certain parameters in the model and want
to estimate only the values you do not know, you must specify the fixed
parameters after creating the idproc model object.

Identifying Low-Order Transfer Functions (Process Models)

Use the following commands to prepare the data and construct a process
model with one pole and a delay:

% Load sample data

load co2data

% Sampling interval is 0.5 min (known)

Ts = 0.5;

% Split data set into estimation data ze

% and validation data zv

ze = iddata(Output_exp1,Input_exp1,Ts,...
‘TimeUnit', 'min');

zv = iddata(Output_exp2,Input_exp2,Ts,...
‘TimeUnit', 'min');

mod=idproc('P1D")

MATLAB computes the following output:

Process model with transfer function

K
G(s) = ---------- * exp(-Td*s)
1+Tpl*s
with K = NaN
Tp1 = NaN
Td = NaN

This model was not estimated from data.

The model parameters K, Tp1, and Td are assigned NaN values, which means
that the parameters have not yet been estimated from the data.

All process-model parameters are structures with the following fields:

® status field specifies whether to estimate the parameter, or keep the
initial value fixed (do not estimate), or set the value to zero. This field can
have the values 'estimate', 'fixed', or 'zero'. For more information,
see “Options for Initial States” on page 3-37.

® min specifies the minimum bound on the parameter.

® max specifies the maximum bound on the parameter.

3-31

3 Linear Model Identification

® value specifies the numerical value of the parameter, if known.
To set the value of K to 12 and keep it fixed, use the following commands:

mod.K.value=12;
mod.K.status="'fixed"';

Note mod is defined for one input. This model is automatically adjusted
to have a duplicate for each input.

To estimate Tp1 and Td only, use the following command:

mod_proc=pem(ze,mod)

MATLAB computes the following result:

Process model with 2 inputs:

y = G_1(s)u_1 + G_2(s)u_2

where
K

G _1(s) = ---------- * exp(-Td*s)
1+Tpi*s

with K=12

Tp1 = 7.0998e+007
Td = 15
K
G_2(8) = ---------- * exp(-Td*s)
1+Tp1*s
with K =12
Tp1 = 3.6962
Td = 3.817

In this case, the value of K is fixed at 12, but Tp1 and Td are estimated.

3-32

Identifying Low-Order Transfer Functions (Process Models)

If you prefer to specify parameter constraints directly in the estimator syntax,
the following table provides examples of pem commands.

Action Example

Fix the value of K to 12.
m=pem(ze, 'pid', 'k', 'fix', 'k',12)

Initialize K for the iterative search
without fixing this value. m=pem(ze, ‘p1d’, 'k',12)

Constrain the value of K between
3 and 4. m=pem(ze, 'pid','k',...
{'min',3},'k",{'max"',4})

Options for Specifying the Process-Model Structure

This section describes how to specify the model structure in the estimation
procedures “How to Estimate Process Models Using the GUI” on page 3-21
and “How to Estimate Process Models at the Command Line” on page 3-27.

In the System Identification Tool GUI. Specify the model structure by
selecting the number of real or complex poles, and whether to include a zero,
delay, and integrator. The resulting transfer function is displayed in the
Process Models dialog box.

At the command line. Specify the model structure using an acronym that
includes the following letters and numbers:

® (Required) P for a process model

(Required) 0, 1, 2 or 3 for the number of poles

sT,

(Optional) D to include a time-delay term e~

(Optional) Z to include a process zero (numerator term)

(Optional) U to indicate possible complex-valued (underdamped) poles

(Optional) I to indicate enforced integration

3-33

3 Linear Model Identification

3-34

Typically, you specify the model-structure acronym as a string argument in
the estimation command pem:

® pem(data, 'P1D') to estimate the following structure:

K e—sTd

G —
© =TT,

® pem(data, 'P2ZU"') to estimate the following structure:

K, (1+sT,
o= e L0
1+2sCT,, +s°Ty,

e pem(data, 'POID') to estimate the following structure:
K
G(s)=—L el
S
® pem(data, 'P3Z') to estimate the following structure:

K, (1+sT,)

G(s) =
) (1+8Tp1)(1+ 5T) (1+Ty3)

For more information about estimating models , see “How to Estimate Process
Models at the Command Line” on page 3-27.

Options for Multiple-Input Models

If your model contains multiple inputs, you can specify whether to estimate
the same transfer function for all inputs, or a different transfer function
for each input. The information in this section supports the estimation
procedures “How to Estimate Process Models Using the GUI” on page 3-21
and “How to Estimate Process Models at the Command Line” on page 3-27.

In the System Identification Tool GUI. To fit a data set with multiple
inputs in the Process Models dialog box, configure the process model settings
for one input at a time. When you finish configuring the model and the

Identifying Low-Order Transfer Functions (Process Models)

estimation settings for one input, select a different input in the Input
Number list.

If you want the same transfer function to apply to all inputs, select the Same
structure for all channels check box. To apply a different structure to each
channel, leave this check box clear, and create a different transfer function for
each input.

At the command line. Specify the model structure as a cell array of acronym
strings in the estimation command pem. For example, use this command to
specify the first-order transfer function for the first input, and a second-order
model with a zero and an integrator for the second input:

m
m

idproc({'P1','P2Z1"'})
pem(data,m)

To apply the same structure to all inputs, define a single structure in idproc.

Options for the Disturbance Model Structure

This section describes how to specify a noise model in the estimation
procedures “How to Estimate Process Models Using the GUI” on page 3-21
and “How to Estimate Process Models at the Command Line” on page 3-27.

In addition to the transfer function G, a linear system can include an additive
noise term He, as follows:

y=Gu+ He

where e 1s white noise.

You can estimate only the dynamic model G, or estimate both the dynamic
model and the disturbance model H. For process models, H is a rational
transfer function C/D, where the C and D polynomials for a first- or
second-order ARMA model.

In the GUI. To specify whether to include or exclude a noise model in the
Process Models dialog box, select one of the following options from the
Disturbance Model list:

3-35

3 Linear Model Identification

3-36

® None — The algorithm does not estimate a noise model (C=D=1). This
option also sets Focus to Simulation.

® Order 1 — Estimates a noise model as a continuous-time, first-order
ARMA model.

®* Order 2 — Estimates a noise model as a continuous-time, second-order
ARMA model.

At the command line. Specify the disturbance model as an argument in
the estimation command pem. For example, use this command to estimate a
first-order transfer function and a first-order noise model:

pem(data, 'P1D', 'DisturbanceModel’', 'ARMA1")

Tip You can type 'dis' instead of 'DisturbanceModel’.

For a complete list of values for the DisturbanceModel model property, see
the idproc reference page.

Options for Frequency-Weighing Focus

You can specify how the estimation algorithm weighs the fit at various
frequencies. This information supports the estimation procedures “How to
Estimate Process Models Using the GUI” on page 3-21 and “How to Estimate
Process Models at the Command Line” on page 3-27.

In the System Identification Tool GUI. Set Focus to one of the following
options:

® Prediction — Uses the inverse of the noise model H to weigh the relative
importance of how closely to fit the data in various frequency ranges.
Corresponds to minimizing one-step-ahead prediction, which typically
favors the fit over a short time interval. Optimized for output prediction
applications.

e Simulation — Uses the input spectrum to weigh the relative importance of
the fit in a specific frequency range. Does not use the noise model to weigh
the relative importance of how closely to fit the data in various frequency
ranges. Optimized for output simulation applications.

Identifying Low-Order Transfer Functions (Process Models)

® Stability — Behaves the same way as the Prediction option, but also
forces the model to be stable. For more information about model stability,
see “Unstable Models” on page 8-65.

® Filter — Specify a custom filter to open the Estimation Focus dialog box,
where you can enter a filter, as described in “Simple Passband Filter” on
page 2-113 or “Defining a Custom Filter” on page 2-114. This prefiltering
applies only for estimating the dynamics from input to output. The
disturbance model is determined from the estimation data.

At the command line. Specify the focus as an argument in the estimation
command pem using the same options as in the GUIL. For example, use this
command to optimize the fit for simulation and estimate a disturbance model:

pem(data, 'P1D', 'dist', 'arma2', 'Focus', 'Simulation')

Options for Initial States

Because the process models are dynamic, you need initial states that capture
past input properties. Thus, you must specify how the iterative algorithm
treats initial states. This information supports the estimation procedures
“How to Estimate Process Models Using the GUI” on page 3-21 and “How to
Estimate Process Models at the Command Line” on page 3-27.

In the System Identification Tool GUI. Set Initial state to one of the
following options:

e Zero — Sets all initial states to zero.

e Estimate — Treats the initial states as an unknown vector of parameters
and estimates these states from the data.

® Backcast — Estimates initial states using a backward filtering method
(least-squares fit).

e U-level est — Estimates both the initial states and the InputLevel
model property that represents the input offset level. For multiple inputs,
the input level for each input is estimated individually. Use if you included
an integrator in the transfer function.

® Auto — Automatically chooses one of the preceding options based on the
estimation data. If initial states have negligible effect on the prediction
errors, the initial states are set to zero to optimize algorithm performance.

3-37

3 Linear Model Identification

At the command line. Specify the initial states as an argument in the
estimation command pem using the same options as in the GUI. For example,
use this command to estimate a first-order transfer function and set the
Initial states to zero:

m=pem(data, 'P1D', 'InitialState', 'zero')

For a complete list of values for the InitialState model property, see the
idproc reference page.

3-38

Identifying Input-Output Polynomial Models

Identifying Input-Output Polynomial Models

In this section...
“What Are Black-Box Polynomial Models?” on page 3-39

“Data Supported by Polynomial Models” on page 3-46

“Preliminary Step — Estimating Model Orders and Input Delays” on page
3-48

“How to Estimate Polynomial Models in the GUI” on page 3-56

“How to Estimate Polynomial Models at the Command Line” on page 3-59
“Options for Multiple-Input and Multiple-Output ARX Orders” on page 3-64
“Option for Frequency-Weighing Focus” on page 3-65

“Options for Initial States” on page 3-66

“Algorithms for Estimating Polynomial Models” on page 3-66

“Example — Estimating Models Using armax” on page 3-67

What Are Black-Box Polynomial Models?

® “Polynomial Model Structure” on page 3-40

¢ “Understanding the Time-Shift Operator q” on page 3-41

e “Definition of a Discrete-Time Polynomial Model” on page 3-41

e “Definition of a Continuous-Time Polynomial Model” on page 3-44

¢ “Definition of Multiple-Output ARX Models” on page 3-44

3-39

3 Linear Model Identification

3-40

Polynomial Model Structure
You can estimate the following types of linear polynomial model structures:

< Bi(@) C(q)
AlQy@®) =Y 2Ly, (t—nk;)+ —elt
(@y@®) Z{E(q) u; (t—nk;)+ D(q)e()

The polynomials A, B,, C, D, and F', contain the time-shift operator g. u, is the
ith input, nu is the total number of inputs, and nk, is the ith input delay that
characterizes the delay response time. The variance of the white noise e(t)

1s assumed to be A. For more information about the time-shift operator, see
“Understanding the Time-Shift Operator q” on page 3-41.

Note This form is completely equivalent to the Z-transform form: q
corresponds to z.

To estimate polynomial models, you must specify the model order as a set of
integers that represent the number of coefficients for each polynomial you
include in your selected structure—na for A, nb for B, nc for C, nd for D,
and nf for F. You must also specify the number of samples nk corresponding
to the input delay—dead time—given by the number of samples before the
output responds to the input.

The number of coefficients in denominator polynomials is equal to the number
of poles, and the number of coefficients in the numerator polynomials is equal
to the number of zeros plus 1. When the dynamics from u(z) to y(¢) contain a
delay of nk samples, then the first nk coefficients of B are zero.

For more information about the family of transfer-function models, see the
corresponding section in System Identification: Theory for the User, Second
Edition, by Lennart Ljung, Prentice Hall PTR, 1999.

Identifying Input-Output Polynomial Models

Understanding the Time-Shift Operator q

The general polynomial equation is written in terms of the time-shift
operator ¢-L. To understand this time-shift operator, consider the following
discrete-time difference equation:

y@&) + a1yt —-T)+agyt-2T) =
biu(t —T) + byu(t — 2T)

where y(t) is the output, u(%) is the input, and T is the sampling interval. ¢!
is a time-shift operator that compactly represents such difference equations

using q_lu(t) =ult-T):

¥() +a1q y (@) +agg 2y () =
b1q ut) + bog 2ult)

or

A(@)y(@t) = B(qu(®)

In this case, A(q) =1+ alq_1 + azq_2 and B(q) = blq_1 + b2q_2 .

Note This g description is completely equivalent to the Z-transform form: ¢
corresponds to z.

Definition of a Discrete-Time Polynomial Model

These model structures are subsets of the following general polynomial
equation:

< B;(@) C(q)
A t)= (t—nk; ——elt
(@y@®) Z{Fi(q) u; (t—nk;)+ D(q)e()

The model structures differ by how many of these polynomials are included
in the structure. Thus, different model structures provide varying levels of
flexibility for modeling the dynamics and noise characteristics. For more

3-41

3 Linear Model Identification

3-42

information about the time-shift operator, see “Understanding the Time-Shift
Operator q” on page 3-41.

The following table summarizes common linear polynomial model structures
supported by the System Identification Toolbox product. If you have a specific
structure in mind for your application, you can decide whether the dynamics
and the noise have common or different poles. A(q) corresponds to poles that
are common for the dynamic model and the noise model. Using common poles
for dynamics and noise is useful when the disturbances enter the system at
the input. I, determines the poles unique to the system dynamics, and D
determines the poles unique to the disturbances.

Model
Structure

Discrete-Time Form Noise Model

ARX

The noise model is 1 and the

nu
A(Q)y@) = ZBi (Qu; (t —nk;)+et) noise is coupled to tﬁe dynamics
=il model. ARX does not let you
model noise and dynamics
independently. Estimate an
ARX model to obtain a simple
model at good signal-to-noise

ARMAX

Extends the ARX structure by
o providing more flexibility for
Alg)yt) = ZBi (@Qlu; (t —nk;)+ Clge(t) modeling noise using the C
i=1 parameters (a moving average of
white noise). Use ARMAX when
the dominating disturbances
enter at the input. Such
disturbances are called load
disturbances.

Identifying Input-Output Polynomial Models

Model
Structure

Discrete-Time Form

Noise Model

Box-Jenkins

(BJ)

3(O) = zf; Eqiu-(t nk;)+ ff(‘”) (t)

Provides completely independent
parameterization for the
dynamics and the noise using
rational polynomial functions.
Use BJ models when the noise
does not enter at the input,

but is primary a measurement
disturbance, This structure
provides additional flexibility for
modeling noise.

Output-Error
(OE)

O = ZB'(Z) w; (£ - nky) +e(t)
=1

Use when you want to
parameterize dynamics, but
do not want to estimate a noise
model.

Note In this case, the noise
models is H =1 in the general
equation and the white noise
source e(t) affects only the
output.

The input-output polynomial models for single output systems are represented
by the idpoly object. Multi-output polynomial ARX models are represented

by the idarx object.

The System Identification Tool GUI supports only the polynomial models
listed in the table. However, you can use pem to estimate all five polynomial
or any subset of polynomials in the general equation. For more information
about working with pem, see “Using pem to Estimate Polynomial Models”

on page 3-61.

3-43

3 Linear Model Identification

3-44

Definition of a Continuous-Time Polynomial Model

In continuous time, the general frequency-domain equation is written in terms
of the Laplace transform variable s, which corresponds to a differentiation
operation:

B(s) Uls)+ C(s)
F(s) D(s)

A(9)Y(s) = E(s)

In the continuous-time case, the underlying time-domain model is a
differential equation and the model order integers represent the number of
estimated numerator and denominator coefficients. For example, n,=3 and
n,=2 correspond to the following model:

A(s) = st + 4183 +ags? +ag
B(s) =bys+by

The simplest way to estimate continuous-time polynomial models of
arbitrary structure is to first estimate a discrete-time model of arbitrary
order and then use d2c to convert this model to continuous time. For more
information, see “Transforming Between Discrete-Time and Continuous-Time
Representations” on page 3-113.

You can also estimate continuous-time polynomial models directly using
continuous-time frequency-domain data. In this case, you must set the Ts data
property to O to indicate that you have continuous-time frequency-domain
data, and use the oe command to estimate an Output-Error polynomial model.

Definition of Multiple-Output ARX Models

You can use a multiple-output ARX model to model a multiple-output dynamic
system. The ARX model structure is represented by the idarx object, and
given by the following equation:

A(@)y(®t) = B(Qu(t —nk)+e(?)

Identifying Input-Output Polynomial Models

For a system with nu inputs and ny outputs, A(g) is an ny-by-ny matrix. A(q)
can be represented as a polynomial in the shift operator ¢!

AlQ) =1, + At 4+ A ™

For more information about the time-shift operator, see “Understanding the
Time-Shift Operator q” on page 3-41.

A(q) can also be represented as a matrix:

a11(@) a12(@) ... a1 (Q)
Alg) = ag1(@) age(@) ... ag,(q)
Anyl (@) Any?2 (@ ... Anyny(q)

where the matrix element @, is a polynomial in the shift operator g':

ki T

1 -1 na
ay;(q) = 8 + agiq totaitq

Skj represents the Kronecker delta, which equals 1 for k= and equals 0

for k#j. This polynomial describes how the old values of the jth output are
affected by the kth output. The ith row of A(g) represents the contribution of
the past output values for predict the current value of the ith output.

B(q) is an ny-by-ny matrix. B(q) can be represented as a polynomial in the
shift operator g

B(Q)=By+Byg ' +...+Bpg ™

3-45

3 Linear Model Identification

3-46

B(q) can also be represented as a matrix:

bo1(@) byog(q@) ... bgy,,(q)
B(g) = 21\q 22q 2nu'd

bnyl (@) bny2 (@ ... bnynu(q)
where the matrix element bkj is a polynomial in the shift operator ¢!

(N A1 -nby, nky; —nb,.—nb, +1
bri (@) = agjq Tt g Y

nk,; is the delay from the jth input to the kth output. B(g) represents the
contributions of inputs to predicting all output values.

Data Supported by Polynomial Models

® “Types of Supported Data” on page 3-46
® “Designating Data for Estimating Continuous-Time Models” on page 3-47

¢ “Designating Data for Estimating Discrete-Time Models” on page 3-47

Types of Supported Data

You can estimate linear, black-box polynomial models from data with the
following characteristics:

¢ Time- or frequency-domain data (iddata or idfrd data objects).

Note For frequency-domain data, you can only estimate ARX and OE
models.

To estimate black-box polynomial models for time-series data, see Chapter
6, “Time Series Identification”.

¢ Real data or complex data in any domain.

Identifying Input-Output Polynomial Models

® Single-output and multiple-output (ARX structure only).

You must import your data into the MATLAB workspace, as described in
Chapter 2, “Data Import and Processing”.

Designating Data for Estimating Continuous-Time Models

To get a linear, continuous-time model of arbitrary structure for time-domain
data, you can estimate a discrete-time model, and then use d2c to transform
it to a continuous-time model.

For continuous-time frequency-domain data, you can estimate directly only
the ARX and Output-Error (OE) continuous-time models. Other structures
include noise models, which is not supported for frequency-domain data.

Tip To denote continuous-time frequency-domain data, set the data sampling
interval to 0. You can set the sampling interval when you import data into
the GUI or set the Ts property of the data object at the command line.

Designating Data for Estimating Discrete-Time Models

You can estimate arbitrary-order, linear state-space models for both time- or
frequency-domain data.

Set the data property Ts to:

® 0, for frequency response data that is measured directly from an
experiment.

e Equal to the Ts of the original data, for frequency response data obtained
by transforming time-domain iddata (using spa and etfe).

Tip You can set the sampling interval when you import data into the GUI or
set the Ts property of the data object at the command line.

3-47

3 Linear Model Identification

3-48

Preliminary Step - Estimating Model Orders and
Input Delays

¢ “Why Estimate Model Orders and Delays?” on page 3-48

¢ “Estimating Orders and Delays in the GUI” on page 3-48

e “KEstimating Model Orders at the Command Line” on page 3-52

¢ “Estimating Delays at the Command Line” on page 3-53

® “Selecting Model Orders from the Best ARX Structure” on page 3-54

Why Estimate Model Orders and Delays?

To estimate polynomial models, you must provide input delays and model
orders. If you already have insight into the physics of your system, you can
specify the number of poles and zeros.

In most cases, you do not know the model orders in advance. To get initial
model orders and delays for your system, you can estimate several ARX
models with a range of orders and delays and compare the performance of
these models. You choose the model orders that correspond to the best model
performance and use these orders as an initial guess for further modeling.

Because this estimation procedure uses the ARX model structure, which
includes the A and B polynomials, you only get estimates for the na, nb, and
nk parameters. However, you can use these results as initial guesses for the
corresponding polynomial orders and input delays in other model structures,
such as ARMAX, OE, and BdJ.

If the estimated nk is too small, the leading nb coefficients are much smaller
than their standard deviations. Conversely, if the estimated nk is too large,
there is a significant correlation between the residuals and the input for lags
that correspond to the missing B terms. For information about residual
analysis plots, see “Residual Analysis” on page 8-21.

Estimating Orders and Delays in the GUI

The following procedure assumes that you have already imported your data
into the GUI and performed any necessary preprocessing operations. For
more information, see Chapter 2, “Data Import and Processing”.

Identifying Input-Output Polynomial Models

To estimate model orders and input delays in the System Identification Tool
GUL

1 In the System Identification Tool GUI, select Estimate > Linear
parametric models to open the Linear Parametric Models dialog box.

The ARX model is already selected by default in the Structure list.

Note For time-series models, select the AR model structure.

2 Edit the Orders field to specify a range of poles, zeros, and delays. For
example, enter the following values for na, nb, and nk:

[1:10 1:10 1:10]

Tip As a shortcut for entering 1:10 for each required model order, click
Order Selection.

3-49

3 Linear Model Identification

3-50

) Linear Parametric Models -0l x|
Structure: 2R (na b nk] |
Circlers: [1:101:10 1:10]

Exjuation: Ay=Bu+e
B TEE * ARX ol
Marme: I
Focus: IF'redic:tiDn - I Initial state; I'..J,'ut,:, - I
Dist. model. Estimate Covariance: IEs:timate - I
[teration Fit: Improyement
[Trace Stop fterations |
Order Selection I Order Editor. . |
Estimate | Close Help |

Identifying Input-Output Polynomial Models

3 Click Estimate to open the ARX Model Structure Selection window, which
displays the model performance for each combination of model parameters.
The following figure shows an example plot.

=} ARX Model Structure Selection -0l x|

File Options Stwle Help

Madel Misfitws number of par's
2 Murnber of par's

Green: MOL Choice

Elue: AIC Chaice I 5

1.5 Red Best Fit] | Misfit=0.20086

na=g
nb=9

nk=2

0.5 1 In=ert |

h_ﬂ Close |
n-l:“]]]]-”-ﬂ” He|p |
10 20 a0
Mumber of pat's

Unexplained output variance {in %)

Click on bars to inzpect modelz.

4 Select a rectangle that represents the optimum parameter combination and
click Insert to estimates a model with these parameters. For information
about using this plot, see “Selecting Model Orders from the Best ARX
Structure” on page 3-54.

This action adds a new model to the Model Board in the System
Identification Tool GUI. The default name of the parametric model contains
the model type and the number of poles, zeros, and delays. For example,
arx692 is an ARX model with n =6, n,=9, and a delay of two samples.

5 Click Close to close the ARX Model Structure Selection window.
After estimating model orders and delays, use these values as initial guesses

for estimating other model structures, as described in “How to Estimate
Polynomial Models in the GUI” on page 3-56.

3-51

3 Linear Model Identification

3-52

Estimating Model Orders at the Command Line

You can estimate model orders using the struc, arxstruc, and selstruc
commands in combination.

If you are working with a multiple-output system, you must use struc,
arxstruc, and selstruc commands for each output. In this case, you must
subreference the correct output channel in your estimation and validation
data sets.

For each estimation, you use two independent data sets—an estimation
data set and a